University of Swaziland

Final Examination, 2010/2011

BSc IV, Bass IV, BEd IV

Title of Paper : Abstract Algebra II

Course Number : M423

Time Allowed

: Three (3) hours

Instructions

1. This paper consists of SEVEN questions.

- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

COURSE NAME AND CODE: M423 Abstract Algebra II

QUESTION 1

(a) Define a unit in a ring R.

UNISWA FINAL EXAMINATIONS

mie a unit in a ring it.

(b) Find a polynomial $f(x) \in \mathbb{Z}_4[x]$ with deg[(f(x))] > 0 that is a unit.

(c) Prove that if R is a ring with unity and I an ideal in R containing a unit, then I = R. [7]

(d) Write $x^3 + 3x^2 + 3x + 4 \in \mathbb{Z}_5[x]$ as a product of irreducible polynomials.

QUESTION 2

(a) Show that the map $\phi: \mathbb{C} \to M_2(\mathbb{R})$ defined by

$$\phi(a+ib) = \left(\begin{array}{cc} a & b \\ -b & a \end{array}\right)$$

is a ring homomorphism. Find its kernel.

•

(b) Find all the units in

i. $\mathbb{Z}[x]$ ii. $\mathbb{Z}_7[x]$ [4]

(c) Show that the matrix $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ is a divisor of zero in $M_2(\mathbb{Z})$. [5]

(d) Show that the set $T = \{2a + 1 : a \in \mathbb{Z}\}$ together with addition and multiplication as defined on \mathbb{Z} does not form a ring. [5]

QUESTION 3

(a) Consider the Evaluation Homomorphism $\phi_{\alpha}: F[x] \to E$, where F is a subfield of the field E. Let $F = \mathbb{Q}$ and $E = \mathbb{R}$. Verify that

$$x^2 + x - 6 \in \operatorname{Ker}(\phi_2).$$

[2]

(b) Which of the following polynomials in $\mathbb{Z}[x]$ satisfy Eisensten's criterion for irreducibility over \mathbb{Q} ?

i.
$$4x^{10} - 9x^3 + 24x - 18$$

ii.
$$2x^{10} + 25x^3 + 10x^2 - 30$$

[6]

(c) Deduce the irreducibility or otherwise of

$$x^3 - 7x^2 + 3x + 3 \in \mathbb{Q}[x].$$

[6]

(d) The polynomial $x^2 + x + 1$ has a zero α in $\mathbb{Z}_2(\alpha)$ and therefore must factor into linear factors in $(\mathbb{Z}_2(\alpha))[x]$. Find this factorisation. [6]

_Turn Over

146

QUESTION 4

- (a) Let R be a ring and S a subset of R. Show that S is a subring of R if and only if
 - i. S is closed with respect to the operations of R, and
 - ii. for each $a \in S$, we have $-a \in S$.

[10]

- (b) Determine whether the indicated operations of addition and multiplication are closed on the set. If they are, does the set together with the operations form a ring?
 - i. $S = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ with addition and multiplication as defined on \mathbb{Z} .
 - ii. $\mathscr{A} = \{A \in M_2(\mathbb{R}) : \det(A) = 0\}$ with the usual addition and multiplication of matrices.

[10]

QUESTION 5

(a) Prove that every finite integral domain is a field.

- [10]
- (b) Show that for a field F, the set of matrices of the form $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$, $a, b \in F$ is a right ideal but not a left ideal in $M_2(F)$. [10]

QUESTION 6

(a) State (but do not prove) Kronecker's Theorem.

[4]

(b) For each of the given algebraic number $\alpha \in \mathbb{C}$, find $\operatorname{irr}(\alpha, \mathbb{Q})$ and $\operatorname{deg}(\alpha, \mathbb{Q})$.

i.
$$\sqrt{\frac{1}{3} + \sqrt{7}}$$

ii.
$$\sqrt{2} + i$$

[8]

- (c) Let R be a ring with unity $1 \neq 0$. Prove:
 - i. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{Z}^+$, then R has characteristic 0.

[3]

ii. If $n \cdot 1 = 0$ for some $n \in \mathbb{Z}^+$, then the smallest such integer is the characteristic of R. [5]

[o]

QUESTION 7

(a) Let R be a ring with additive identity 0. Prove that for $a, b \in R$,

i.
$$a0 = 0a = 0$$
.

[4]

ii.
$$a(-b) = (-a)b = -ab$$
.

[4]

iii.
$$(-a)(-b) = ab$$
.

[4]

(b) Show that $x^4 - 2x^2 + 8x + 1$ is irreducible over \mathbb{Q} .

[8]

END OF EXAMINATION PAPER