UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2010/2011

BSc./BEd./B.A.S.S IV

TITLE OF PAPER : NUMERICAL ANALYSIS II

COURSE NUMBER : M 411

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS.

3. NON PROGRAMMABLE

CALCULATORS MAY BE USED.

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- 1. (a) Find a linear least squares polynomial approximation to the function $x \sin(\pi x)$ on the interval [0, 1]. [10 marks]
 - (b) Given that functions $\{\phi_0(x), \phi_1(x), \phi_2(x)\}$ are orthogonal on $(0, \infty)$ with respect to the weight function w(x) = 1, use the Gram-Schmidt process to construct these functions. [10 marks]

QUESTION 2

2. (a) Fit a linear polynomial through the data

	i	0	1	2	3
•	x_i	1.8	2.1	3.2	4.4
•	y_i	2.0	4.2	8.7	9.5

in the least squares sense.

[10 marks]

(b) Prove that Chebyshev polynomials $\{T_0(x), T_1(x), \ldots\}$ of the first kind are orthogonal on the open interval (-1,1) with respect to weight function $w(x) = 1/\sqrt{1-x^2}$. [10 marks]

QUESTION 3

3. (a) Use a single step of the modified Euler method to solve:

$$x'' - x' - 2x = 3e^{-t}, \ 0 \le x \le 1, \ x(0) = 0, x'(0) = 1$$

for x(0.1) and x'(0.1).

[14 marks]

(b) Use the Runge-Kutta method of order 2 to find value of the function

$$x(t) = \int_0^t e^{ au^2} d au$$

at t = 0.1.

[6 marks]

QUESTION 4

4. A multi-step method for solving the initial value problem (IVP)

$$y'(x) = f(x, y), \ a \le x \le b, \ y(a) = \alpha$$

is defined by the difference equation

$$y_{n+1} = 5y_{n-1} - 4y_n + 2h[f(t_n, y_n) + 2f(t_{n-1}, y_{n-1})]; n = 0, 1, \dots, N-2$$

with starting values y_0 and y_1 .

(a) Use this method to solve

$$y'(x) = x + y, 0 \le x \le 1, y(0) = 0$$

for y(0.4) with h = 0.1, and starting values $y_0 = 0$ and $y_1 = 1$. [9 marks]

(b) Determine whether or not the method is convergent.

[11 marks]

QUESTION 5

5. (a) Consider the boundary value problem

$$\begin{split} u_{xx} + u_{yy} = & x + y, \ 0 \le x \le 2, \ 0 \le y \le 3, \\ u(x,0) = & u(x,1) = x, \ 0 \le x \le 2, \\ u(0,y) = & 0, \ u(1,y) = 2, \ 0 \le y \le 3. \end{split}$$

Compute finite difference approximations to both u(1,1) and u(1,2) by replacing both u_{xx} and u_{yy} with central difference approximations on a uniform grid with step size h=1. [10 marks]

(b) Consider the numerical scheme

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + a \frac{U_j^n - U_{j-1}^n}{\Delta x} = 0$$

for approximating the advection equation

$$u_t + au_x = 0,$$

subject to initial condition u(x,0) = f(x), where a > 0 is given.

Show that this numerical scheme is convergent provided

$$0 \le a \frac{\Delta t}{\Delta x} \le 1.$$
 [10 marks]

QUESTION 6

6. Consider the differential problem;

$$u_t(x,t) = u_{xx}(x,t), 0 < x < 1, t > 0,$$

 $u(0,t) = u(0,t) - 1, u_x(1,t) = 0, t > 0,$
 $u(x,0) = x(1-x), 0 \le x \le 1.$

Suppose that an approximate solution to this problem is determined by replacing u_t with a backward difference, and that both u_x and u_{xx} are replaced by central differences.

(a) If resulting finite difference equations may be written in matrix form as

$$\mathbf{u}_{j} = B\mathbf{u}_{j-1} + \mathbf{v}$$
, where $j = 1, 2, ...$

then dentify the square matrix B, and the vectors \mathbf{u}_j and \mathbf{v} . [12 marks]

(b) Compute the leading terms of the truncation error for this numerical scheme. [8 marks]

QUESTION 7

7. (a) Show that the numerical scheme

$$\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}=\frac{U_{j-1}^{n}-2U_{j}^{n}+U_{j+1}^{n}}{(\Delta x)^{2}}$$

for approximating the differential equation

$$u_t = u_{xx} \tag{1}$$

is stable provided $0 < \frac{\Delta t}{(\Delta x)^2} \le \frac{1}{2}$. [10 marks]

(b) Use the numerical scheme given in part (7a) with $\Delta t = 0.1$ and $\Delta x = 1$ to solve parabolic differential equation (1) for u(1,0.1) and u(2,0.1) subject to boundary conditions

$$u(0,t) = u(3,t) = 0$$

and initial condition

$$u(x,t) = x(x-3), 0 \le x \le 3.$$

[10 marks]