UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2010/2011

BSc./ BEd./B.A.S.S IV

TITLE OF PAPER : NUMERICAL ANALYSIS II

COURSE NUMBER

: M 411

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS.

3. NON PROGRAMMABLE

CALCULATORS MAY BE USED.

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- 1. (a) Use Chebyshev polynomials of the first kind with degree at most 2 to approximate $\arccos(x)$. [10 marks]
 - (b) The Chebyshev polynomials $\{U_0(x), U_1(x), \dots\}$ of the second kind are defined by

 $U_n(x) = \frac{\sin[(n+1)\arccos x]}{\sin(\arccos x)}; n = 0, 1, 2, \dots$

Show that these functions are orthogonal on the open interval (-1,1) with respect to the weight function $w(x) = \sqrt{1-x^2}$. [10 marks]

QUESTION 2

- 2. (a) Let $S := \{\phi_0(x), \phi_1(x), \dots, \phi_n(x)\}$ be a set of orthogonal functions on [a, b] with respect to the weight function w(x). Show that S is linearly independent. [5 marks]
 - (b) For the problem of approximating 1/x on [1,2] using a quadratic least squares polynomial, the normal equations may be written in matrix form

$$A\mathbf{b} = \mathbf{c} \tag{1}$$

Explicitly identify matrix A, and vectors \mathbf{b} and \mathbf{c} .

[10 marks]

(c) What constant α makes the expression

$$\sum_{k=0}^{m} [f(x_k) - \alpha x_k + 1]^2$$

as small as possible?

[5 marks]

QUESTION 3

3. (a) Use a single step of the Runge-Kutta method of order 2 to solve:

$$x'' - x' - 2x = 3e^{-t}, \ 0 \le x \le 1, \ x(0) = 0, x'(0) = 1,$$

for x(0.1) and x'(0.1).

[14 marks]

(b) Use the Runge-Kutta method of order 4 to find value of the function

$$x(t) = \int_0^t e^{\tau^2} d\tau$$

at t = 0.1.

[6 marks]

QUESTION 4

4. A multi-step method for solving the initial value problem (IVP)

$$y'(x) = f(x, y), \ a \le x \le b, \ y(a) = \alpha$$

is defined by the difference equation

$$y_{n+2} = -3y_n + 4y_{n+1} - 2hf(t_n, y_n); n = 0, 1, \dots, N-2$$

with starting values y_0 and y_1 .

(a) Use this method to solve

$$y'(x) = 2 - y$$
, $0 \le x \le 0$, $y(0) = 0$

for y(0.2) and y(0.3) with h = 0.1, and starting values $y_0 = 0$ and $y_1 = 2 - e^{-0.1}$. [6 marks]

- (b) Write down the local truncation error for the method. [3 marks]
- (c) Determine whether or not the method is convergent. [11 marks]

QUESTION 5

5. (a) Consider the boundary value problem

$$u_{xx} + u_{yy} = 0, 0 \le x \le 2, 0 \le y \le 3,$$

 $u(x,0) = x/2, u(x,3) = 1, 0 \le x \le 2,$
 $u(0,y) = y/3, u(2,y) = 1, 0 \le y \le 3.$

Use a finite difference method known as "the 5 point formula" with a uniform grid on S to approximate both u(1,1) and u(1,2). [10 marks]

(b) Determine a sufficient condition for convergence of the numerical scheme

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + a \frac{U_j^n - U_{j-1}^n}{\Delta \tau} = 0$$

for approximating the advection equation

$$u_t + au_x = 0,$$

subject to initial condition u(x,0) = f(x), where a > 0 is given.[10 marks]

QUESTION 6

6. Consider the differential problem;

$$u_t(x,t) = u_{xx}(x,t), 0 < x < 1, t > 0,$$

$$u(0,t) = 0, u_x(1,t) = u(1,t) - 1, t > 0,$$

$$u(x,0) = \sin(\pi x), 0 \le x \le 1.$$

Suppose that an approximate solution to this problem is determined by replacing u_t with a forward difference, and that both u_x and u_{xx} are replaced by central differences.

(a) Show that the resulting finite difference equations may be written in matrix form as

$$\mathbf{u}_{j+1} = B\mathbf{u}_j + \mathbf{v}$$
, where $j = 1, 2, ...$

Identify the square matrix B, and the vectors \mathbf{u}_i and \mathbf{v} . [12 marks]

(b) Compute the leading terms of the truncation error for this numerical scheme. [8 marks]

QUESTION 7

7. (a) Show that the numerical scheme

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} = \frac{1}{2} \left(\frac{U_{j-1}^n - 2U_j^n + U_{j+1}^n}{(\Delta x)^2} + \frac{U_{j-1}^{n+1} - 2U_j^{n+1} + U_{j+1}^{n+1}}{(\Delta x)^2} \right)$$

for approximating the differential equation

$$u_t = u_{xx} \tag{2}$$

is unconditionally stable.

[10 marks]

(b) Use the numerical scheme given in part (7a) with $\Delta t = 0.1$ and $\Delta x = 0.5$ to solve parabolic differential equation (2) for u(0.5, 0.1) subject to boundary conditions

$$u(0,t) = u(1,t) = 0$$

and initial condition

$$u(x,t) = x(1-x), 0 \le x \le 1.$$

[10 marks]