UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2010/2011

BSc. /BEd. /B.A.S.S III

TITLE OF PAPER : REAL ANALYSIS

COURSE NUMBER

: M 331

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS :

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- 1. (a) Let S be a set of real numbers. Explain precisely what is meant by each of the following statements.
 - i. A real number α is an upper bound for S.

[2 marks]

ii. A real number β is a supremum for S.

[2 marks]

(b) State the supremum property for set \mathbb{R} of all real numbers.

[2 marks]

(c) Does each of the following sets have a supremum? Justify your answer.

i.
$$S := \{x \in \mathbb{R} : |x| + |x+1| > 2\}.$$

4 marks

ii. $S := \{x \in \mathbb{R} : |x| = |x+1|\}.$

[4 marks]

- (d) Prove that the sum of a rational number and an irrational number is always irrational. [3 marks]
- (e) Let S be a non-empty set of real numbers, and let $\alpha = \sup S$. Also, let $T := \{ax : a > 0, x \in S\}$. Show that $\sup T = a\alpha$. [3 marks]

QUESTION 2

2. (a) Let (x_n) be a sequence of real numbers. Explain precisely what is meant by each of the following statements.

i. A real number l is a limit of the sequence (x_n) .

[3 marks]

ii. The sequence (x_n) converges.

[1 marks]

(b) Prove that any sequence (x_n) of real numbers has a unique limit.

[4 marks]

(c) Show that if x is the limit of the sequence (x_n) of real numbers then |x| is the limit of the sequence $(|x_n|)$.

[4 marks]

- i. Explain precisely what it means to say that "a sequence (x_n) of real numbers [3 marks] is Cauchy".
 - ii. State the Cauchy convergence criterion for a sequence of real

[2 marks]

iii. Use the Cauchy convergence criterion to prove that the sequence

is convergent.

[3 marks]

- 3. (a) Let $f, g : [a, b] \to \mathbb{R}$ be functions, and let $c \in (a, b)$.
 - i. Explain precisely what it means to say that f is continuous at

[2 marks]

- ii. Suppose that both f and g are continuous at c, then prove each of the following statements.
 - A. The difference f g is continuous at c.

[4 marks]

B. The scalar multiple αf is continuous at c.

[4 marks]

- iii. Give examples of functions $f, g : [-1, 1] \to \mathbb{R}$ such that f g is continuous and yet neither f nor g is continuous. [2 marks]
- (b) i. State the Intermediate value theorem.

[2 marks]

ii. Show that the equation $-x = \cos x$ has a solution in the interval $[-\pi/2, 0]$.

[3 marks]

(c) Is the following statement true or false? Justify your answer.

If a function $f:(0,1)\to\mathbb{R}$ is continuous then f is bounded.

[3 marks]

QUESTION 4

- 4. (a) Let $f:(a,b)\to\mathbb{R}$ be a function.
 - i. Explain what is meant by saying that f is differentiable at $c \in (a, b)$.

[2 marks]

ii. Show if f is differentiable at point c, then f is continuous at $c \in (a, b)$.

[4 marks]

- iii. Give an example of a function $f:(-1,0)\to\mathbb{R}$ that is continuous at some point $c\in(-1,0)$ and yet f not differentiable at c. [2 marks]
- (b) i. State the Mean value theorem.

[2 marks]

- ii. Use the Mean value theorem to prove each of the following statements.
 - A. $|\sin x| \le |x|, \ \forall x \in \mathbb{R}$.

[5 marks]

B. $a - b \le \sin b - \sin a \le b - a$ for a < b.

[5 marks]

- 5. (a) Let $\sum a_n$ be a series in \mathbb{R} . Then, explain the following statements.
 - i. The k-th partial sum.

[2 marks]

ii. $\sum a_n$ converges.

[2 marks]

iii. $\sum a_n$ is absolutely convergent.

[1 marks]

(b) Show that if $\sum a_n$ converges, then $\lim(a_n) = 0$.

[3 marks]

- (c) Give an example of series $\sum a_n$ such that $\lim(a_n) = 0$ and yet $\sum a_n$ does not converge. [2 marks]
- (d) State the Cauchy convergence criterion for series.

[2 marks]

(e) Prove that if $\sum a_n$ is absolutely convergent, then $\sum a_n$ converges.

[4 marks]

(f) Determine whether the series

$$\sum \frac{(-1)^{n+1}}{n}$$

converges or not. State any theorems used.

[4 marks]

QUESTION 6

6. (a) State Riemann's criterion for integrability.

[2 marks]

- (b) Prove that if $f:[a,b]\to\mathbb{R}$ is bounded and $\{P_n:n\in\mathbb{N}\}$ is a sequence of partitions of [a,b] such that $\lim_n (U(P_n;f)-L(P_n;f))=0$ then f is integrable. [4 marks]
- (c) Use part 6b above to show that the signum function sgn defined by

$$sgn(x) := \begin{cases} -1, & \text{if } x < 0 \\ 0, & \text{if } x = 0 \\ 1, & \text{if } x > 1 \end{cases}$$

is Riemann integrable on [-1,1] and $\int_{-1}^{1} sgn = 0$.

[8 marks]

- (d) Determine whether each of the following statements is true or false. Justify your answers.
 - i. If $f:[0,1]\to\mathbb{R}$ is a bounded function, then f is Riemann integrable.

[3 marks]

ii. There are two distinct functions $f, g : [0,1] \to \mathbb{R}$ such that the sum f+g is Riemann integrable and yet neither f nor g is Riemann integrable. [3 marks]

- 7. (a) State and prove the squeeze theorem for sequences of real numbers. [6 marks]
 - (b) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable and that $|f'(x)| \leq 0, \forall x \in \mathbb{R}$. Then, f is a decreasing function. [6 marks]
 - (c) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is twice differentiable on \mathbb{R} and that $a, b \in \mathbb{R}$ with a < b. Let $g, h : \mathbb{R} \to \mathbb{R}$ be functions defined by

$$g(x) := f(b) - f(x) - (b - x)f'(x)$$

and

$$h(x) := (b-a)^2 g(x) - (b-x)^2 g(a)$$

i. Show that h(a) = h(b).

[2 marks]

ii. Use Rolle's theorem to show that for some $c \in (a, b)$

$$f(b) = f(a) + (b - a)f'(a) + \frac{1}{2}(b - a)^2 f''(c)$$

[6 marks]