UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2010/2011

BSc. /BEd. /B.A.S.S III

TITLE OF PAPER

: REAL ANALYSIS

COURSE NUMBER : M 331

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

1.	(a)	Let S	be a se	t of real	numbers.	Explain	precisely	what	is	meant	by	each
of the following statements.												

- i. A real number α is an upper bound for S. [2 marks]
- ii. A real number β is a lower bound for S. [2 marks]
- iii. S is bounded above. [2 marks]
- iv. S is bounded below. [2 marks]
- v. S is bounded. [2 marks]
- (b) Determine whether the set $S := \{x \in \mathbb{R} : |x| + |x+1| < 2\}$ is bounded or not. [4 marks]
- (c) Prove that the sum of a rational number and an irrational number is always irrational. [3 marks]
- (d) Let S be a non-empty set of real numbers, and let $\alpha = \sup S$. Also, let $T := \{y \in \mathbb{R} : y = -x \text{ and } x \in S\}$. Show that $\inf T = -\alpha$. [3 marks]

QUESTION 2

- 2. (a) Let (x_n) be a sequence of real numbers. Explain precisely what is meant by each of the following statements.
 - i. A real number l is a limit of the sequence (x_n) . [3 marks]
 - ii. The sequence (x_n) is convergent. [2 marks]
 - iii. The sequence (x_n) is bounded. [2 marks]
 - (b) Show that if a sequence (x_n) of real numbers is convergent then (x_n) is bounded. [4 marks]
 - (c) i. Explain precisely what it means to say that "a sequence (x_n) of real numbers is Cauchy". [3 marks]
 - State the Cauchy convergence criterion for a sequence of real numbers. [2 marks]
 - iii. Show that if (x_n) and (y_n) are Cauchy sequences, then $(x_n + y_n)$ is a Cauchy sequence. [4 marks]

- 3. (a) Let $f, g : [a, b] \to \mathbb{R}$ be functions, and let $c \in (a, b)$.
 - i. Explain precisely what it means to say that f is continuous at c. [2 marks]
 - ii. If f is continuous at c, then show that the function $|f|:[a,b]\to\mathbb{R}$ defined by |f|(x):=|f(x)| is also continuous at c. [4 marks]
 - iii. Prove that if both f and g are continuous at c then the sum f + g is also continuous at c. [4 marks]
 - iv. Is the converse of part 3(a)iii above true? Justify your answer.

[2 marks]

(b) i. State the Intermediate value theorem.

[2 marks]

- ii. Show that the equation $x = \cos x$ has a solution in the interval $[0, \pi/2]$.
- (c) Is the following statement true or false? Justify your answer.

If a function $f:(-1,0)\to\mathbb{R}$ is continuous then f is bounded. [3 marks]

QUESTION 4

- 4. (a) Let $f:(a,b)\to\mathbb{R}$ be a function.
 - i. Explain what is meant by saying that f is differentiable at $c \in (a, b)$. [2 marks]
 - ii. Show that f is continuous at $c \in (a, b)$ whenever f is differentiable at point c. [4 marks]
 - iii. Give an example of a function $f:(0,2)\to\mathbb{R}$ that is continuous at some point $c\in(0,2)$ and yet f not differentiable at c. [2 marks]
 - (b) i. State the Mean value theorem. [2 marks]
 - ii. Use the Mean value theorem to prove each of the following statements.
 - A. $|\sin x| \le |x|, \ \forall x \in \mathbb{R}.$ [5 marks]
 - B. $\frac{x-1}{x} < \log x < x-1 \text{ for } x > 1.$ [5 marks]

- 5. (a) Let $\sum a_n$ be a series in \mathbb{R} . Then, explain the following statements.
 - i. The k-th partial sum.

[2 marks]

ii. $\sum a_n$ converges.

[2 marks]

iii. $\sum a_n$ is absolutely convergent.

[1 marks]

- (b) State the Cauchy convergence criterion for series.
- [2 marks]
- (c) Prove that $\sum a_n$ converges whenever $\sum a_n$ is absolutely convergent.

[4 marks]

- (d) Let $\sum a_n$ be a convergent series of non-negative numbers, and let (b_n) be a bounded sequence of real numbers. Then, show that the series $\sum a_n b_n$ converges. [5 marks]
- (e) Determine whether the series

$$\sum \frac{(2n)!}{3^n(n!)^2}$$

converges or diverges. State any theorems used.

[4 marks]

QUESTION 6

6. (a) State Riemann's criterion for integrability.

[2 marks]

- (b) Prove that if $f:[a,b] \to \mathbb{R}$ is bounded and $\{P_n: n \in \mathbb{N}\}$ is a sequence of partitions of [a,b] such that $\lim_n (U(P_n;f) L(P_n;f)) = 0$ then f is integrable. [4 marks]
- (c) Use part 6b above to show that the function $f:[0,1]\to\mathbb{R}$ defined by

$$f(x) := \begin{cases} 0, & \text{if } 0 \le x < 1/2 \\ 1, & \text{if } 1/2 \le x < 1 \end{cases}$$

is Riemann integrable and $\int_0^1 f = \frac{1}{2}$.

[8 marks]

- (d) Determine whether each of the following statements is true or false. Justify your answers.
 - i. Every function $f:[0,1]\to\mathbb{R}$ is Riemann integrable whenever f is bounded. [3 marks]
 - ii. There are two distinct functions $f, g : [0, 1] \to \mathbb{R}$ such that the product fg is Riemann integrable and yet neither f nor g is Riemann integrable. [3 marks]

- 7. (a) Let $f, g, h: (a, b) \to \mathbb{R}$ be functions and let $c \in (a, b)$. Show that if
 - i. $f(x) \le g(x) \le h(x)$,
 - ii. f(c) = g(c) = h(c), and
 - iii. both f and h are continuous at c,

then g is also continuous at c.

[6 marks]

(b) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable and that $|f'(x)| < 1, \forall x \in \mathbb{R}$. Then, prove that the equation

$$f(x) = x$$

has at most one solution.

[6 marks]

(c) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is twice differentiable on \mathbb{R} and that $a, b \in \mathbb{R}$ with a < b. Let $g, h: \mathbb{R} \to \mathbb{R}$ be functions defined by

$$g(x) := f(b) - f(x) - (b - x)f'(x)$$

and

$$h(x) := (b-a)^2 g(x) - (b-x)^2 g(a)$$

i. Show that h(a) = h(b).

[2 marks]

ii. Use Rolle's theorem to show that for some $c \in (a,b)$

$$f(b) = f(a) + (b-a)f'(a) + \frac{1}{2}(b-a)^2 f''(c)$$

[6 marks]