University of Swaziland

Final Examination, May 2011

BSc III, Bass III, BEd III

Title of Paper

: Abstract Algebra I

Course Number

: M323

Time Allowed

: Three (3) hours

Instructions

1. This paper consists of SEVEN questions.

- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

QUESTION 1

100

(a) Define a group.

[4]

(b) Determine whether the set

$$G = \left\{ \left(egin{array}{cc} a & b \ 0 & 1 \end{array}
ight) : a,b \in \mathbb{R}, a
eq 0
ight\}$$

gives a group structure under matrix multiplication

[8]

(c) Prove that a subset H of a group G is a subgroup of G if and only if $H \neq \emptyset$, and whenever $g, h \in H$, then $gh^{-1} \in H$.

[8]

QUESTION 2

(a) Find all $x \in \mathbb{Z}$ such that

 $3x \equiv 2 \pmod{7}$.

[4]

(b) Define an equivalence relation on a set S.

[4]

(c) Define a relation \sim on \mathbb{Z} by $m \sim n$ if and only if $m \equiv n \pmod{4}$.

i. Show that \sim is an equivalence relation on \mathbb{Z} .

[8]

ii. Describe the partition given by \sim .

[4]

QUESTION 3

(a) Let H be the subset

$$\{\rho_0 = (1), \rho_1 = (123), \rho_2 = (132)\}$$

of the symmetric group S_3 .

i. Show that H is a subgroup of S_3 .

[5]

ii. Show that H is cyclic.

[5]

(b) Prove that every cyclic group is abelian.

[5]

(c) Show that \mathbb{Z}_p has no proper subgroups if p is a prime number.

[5]

QUESTION 4

(a) Find all the subgroups of \mathbb{Z}_{18} and give a lattice diagram.

[10]

(b) Let $\phi: G \to H$ be a group isomorphism and let e be the identity of G. Prove that $\phi(e)$ is the identity in H and that $[\phi(a)]^{-1} = \phi(a^{-1})$. [10]

TURN OVER

110

[4]

[4]

QUESTION 5

Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 8 & 1 & 7 & 5 & 3 & 4 & 2 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 1 & 8 & 3 & 4 & 5 & 2 & 6 \end{pmatrix}$.

- (a) i. Express α and β as products of disjoint cycles. [4]
 - ii. Express α and β as products of transpositions and indicate whether they are even or odd permutations. [4]

(b) Compute

i.
$$\alpha^{-1}$$
 [2]

ii.
$$\beta^{-1}\alpha$$

iii.
$$(\alpha\beta)^{-1}$$

(c) Prove that every group of prime order is cyclic

QUESTION 6

- (a) For $a, b, m \in \mathbb{Z}$, show that if gcd(a, m) = 1 and gcd(b, m) = 1, then gcd(ab, m) = 1. [7]
- (b) Find integers r and s such that gcd(211, 130) = 211r + 130s. [7]
- (c) Find the number of genrators in each of the cyclic groups \mathbb{Z}_{30} and \mathbb{Z}_{42} . [6]

QUESTION 7

- (a) Define a normal subgroup of a group.
- (b) Verify that the subgroup $N = \{(1), (123), (132)\}$ is a normal subgroup of the group S_3 . [6]
- (c) For each binary operation * defined on the given set, say whether or not * gives a group structure with the set.
 - i. Define * on \mathbb{Q}^+ by a*b=ab/2, for all $a,b\in\mathbb{Q}^+$. [4]
 - ii. Define * on \mathbb{R} by a*b=ab+a+b for all $a,b\in\mathbb{R}$.

END OF EXAMINATION PAPER