University of Swaziland

Final Examination, May 2011

BSc III, Bass III, BEd III

Title of Paper

: Complex Anlysis

Course Number

: M313

Time Allowed

: Three (3) hours

Instructions

1. This paper consists of SEVEN questions.

2. Each question is worth 20%.

3. Answer ANY FIVE questions.

4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Hint: pass to polars.

(b) Find the limits. Explain.

(i)
$$\lim_{z \to 1} \frac{1}{(z-1)^2}$$
; [2]

(ii)
$$\lim_{z \to \infty} \frac{2z + 3i}{z + 2}.$$
 [2]

(c) Define a function f(z) continuous at a point z_0 .

[2](d) Using just the definition of the derivative, find f'(z) for the following f(z):

(i)
$$f(z) = |z|^2$$
. Use $z\bar{z} = |z|^2$. [6]

(ii)
$$f(z) = \operatorname{Im} z.$$
 [2]

Turn Over

100

QUESTION 3

- (a) Using Cauchy-Riemann equations,
 - (i) state a sufficient condition theorem for existence of $f'(z_0)$, and thus
 - (ii) check if there are derivatives of $f(z) = z^2 + 3z + 2$, and $g(z) = e^x(\cos y + i\sin y)$, z = x + iy.

[1,6]

(b) Use Cauchy-Riemann equations to show that f'(z) does not exist if

$$f(z) = 2x + ixy^2, \quad z = x + iy.$$

[3]

(c) Use the results from Q3 (a) (i) to show that f'(z) and its derivative f''(z) exist everywhere and find f''(z) when

$$f(z) = 3x + y + i(3y - x), \quad z = x + iy.$$

[4]

(d) Derive the Cauchy-Riemann equations in polar coordinates.

[6]

QUESTION 4

- (a) Prove that if f(z) = u(x, y) + iv(x, y) is analytic, z = x + iy, in domain D, then u nad v are harmonic in D.
- (b) Consider $f(z) = \frac{1}{z}$
 - (i) Is f(z) analytic? Explain. [2]
 - (ii) Find out if there are any singular points. Explain. [2]
- (c) Given $u(x, y) = e^x [x \cos y y \sin y]$
 - (i) Find f(z) as an explicit function of z, where the real part of f(z) is u(x,y). [8]
 - (ii) Find f'(z). [3]

Turn Over

PAGE 3

QUESTION 5

(a) Evaluate the following integral

$$I = \int_C z^{1/2} \ dz,$$

where C is a positively oriented half circle $C = \{z : |z| = 3, 0 \le \arg z \le \pi\}.$

(b) (i) Define a simple closed curve. [1]

(ii) State [1]

(iii) derive the Cauchy formula for continuous f'(z). [6]

Hint: Apply Green's Theorem $\int_C P \ dx + Q \ dy = \iint_R (Q_x - P_y) dx dy$.

(c) Evaluate

$$\int_C \frac{dz}{z-z_0},$$

where C is the positively oriented circle $|z - z_0| = R$.

[6]

[6]

QUESTION 6

(a) Expand $\frac{1}{z^2+3z}$ into simple fractions, and thus show that

$$\int_C^{\bullet} \frac{dz}{z^2 + 3z} = \frac{2\pi i}{3}.$$

[6]

(b) State the Laurent series theorem.

[3]

(c) Find the Maclaurin series expansion for

$$f(z) = z^2 e^{3z}.$$

[3]

(d) Give the Laurent series expansions in powers of z for the function

$$f(z) = \frac{1}{z^2(1-z)}$$

valid in

(i)
$$0 < |z| < 1$$
; [4]

(ii)
$$1 < |z| < \infty$$
. [4]

102

QUESTION 7

(a) Using the Laurent series expansion in the neighbourhood of isolated singular point, derive the formula

$$\int_C f(z) \ dz = 2\pi i b_1.$$

[3]

(b) Find the residue at z = 0 for the function

$$f(z) = \frac{1}{4z - z^2}.$$

[3]

Hint: $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$, for |z| < 1.

(c) Consider the function

$$f(z) = \frac{1 - \cosh z}{z^3}.$$

(i) Show that $\cosh z = \cos(iz)$.

[3]

(ii) Show that a singular point is a pole and find its order.

[3]

(iii) Find the residue.

[1]

(d) Using the residue theorem, evaluate

$$\int_0^\infty \frac{\cos x}{x^2+a^2} \ dx, \quad a>0.$$

[7]

END OF EXAMINATION PAPER