UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2010/2011

B.Sc. / B.Ed. / B.A.S.S.III

TITLE OF PAPER

: VECTOR ANALYSIS

COURSE NUMBER

: M312

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(a) Evaluate:

(i)
$$\Gamma(6.8)$$
, given that $\Gamma(1.8) = 0.9314$, [2]

(ii)
$$\int_0^\infty x^m e^{-ax^n} dx$$
, where m and n are positive integers. [8]

(b) Show that

$$\int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta = \frac{\Gamma(m)\Gamma(n)}{2\Gamma(m+n)}, \text{ where } m, n > 0.$$
 [10]

QUESTION 2

(a) Find a parametrization of the cylinder

$$x^2 + (y - a)^2 = a^2$$
 $0 \le z \le 5$,

where a is a constant. [6]

(b) Find the distance from the plane
$$x+2y+6z=10$$
 to the plane $x+2y+6z=20$. [7]

(c) Find the angle between the planes
$$x + y = 1$$
 and $2x + y - 2z = 2$. [7]

- (a) Express the following in cylindrical coordinates:
 - (i) $\operatorname{grad} \phi$;
 - (ii) $div \mathbf{F}$;
 - (iii) the volume element dV, and
 - (iv) the Jacobian.

[10]

(b) Let D be the region in the xyz-space defined by the inequalities

$$1 \le x \le 2, \qquad 0 \le xy \le 2, \qquad 0 \le z \le 1.$$

Evaluate

$$\iiint_D (x^2y + 3xyz) dx dy dz$$

by applying the transformation

$$u=x, \qquad v=xy, \qquad w=3z$$

and integrating over the appropriate region G in the uvw-space.

[10]

- (a) Let $\mathbf{F} = (6xy + z^3)\hat{\mathbf{i}} + (3x^2 z)\hat{\mathbf{j}} + (3xz^2 y)\hat{\mathbf{k}}$ be a vector field.
 - (i) Show that **F** is irrotational. [3]
 - (ii) Find div curl **F**. [3]
- (b) Part of a railway line (superimposed on a rectangular coordinate system) follows the line y = -x for $x \le 0$, then turns to reach the point (4,0) following a cubic curve. Find the equation of this curve if the track is continuous, smooth, and has continuous curvature. [10]
- (c) Find parametric equations for the line through (1, -6, 1) perpendicular to the plane x + 2y + 2z = 13. [4]

QUESTION 5

- (a) Determine the directional derivative of $\phi(x,y) = \ln \sqrt{x^2 + y^2}$ at the point (1,0) in the direction of $\frac{2\hat{\mathbf{i}} + 2\hat{\mathbf{j}}}{2\sqrt{2}}$. [6]
- (b) Find a unit normal to the surface $2x^2 + 4yz 5z^2 = -100$ at P(2, -2, 3). [6]
- (c) Find a parametrization of the first-octant portion of the cone $z = \frac{\sqrt{x^2 + y^2}}{2}$ between the planes z = 0 and z = 3. [8]

- (a) If $\mathbf{A} = (3x^2 6yz)\hat{\mathbf{i}} + (2y + 3xz)\hat{\mathbf{j}} + (1 4xyz^2)\hat{\mathbf{k}}$, evaluate $\int_C \mathbf{A} \cdot d\mathbf{r}$ from (0, 0, 0) to (1, 1, 1) along the following paths C:
 - (i) x = t, $y = t^2$, $z = t^3$;
 - (ii) the straight lines from (0,0,0) to (0,0,1), then to (0,1,1), and then to (1,1,1);
 - (iii) the straight line joining (0,0,0) and (1,1,1). [12]
- (b) Verify Green's theorem in the plane for

$$\oint_C [2x\mathrm{d}x - 3y\mathrm{d}y],$$

where C is the closed curve (described in the positive direction) of the region bounded by the curves $y = x^2$ and $y^2 = x$. [8]

QUESTION 7

- (a) By any method, find the integral of g(x, y, z) = xyz over the surface of the cube cut from the first octant by the planes x = 1, y = 1, and z = 1. [10]
- (b) By any method, find the outward flux of the field $\mathbf{F} = (6x^2 + 2xy)\hat{\mathbf{i}} + (2y + x^2z)\hat{\mathbf{j}} + (4x^2y^3)\hat{\mathbf{k}}$ across the boundary of the region D bounded below by the plane z = 0, laterally by the circular cylinder $x^2 + (y 1)^2 = 1$, and above by the paraboloid $z = x^2 + y^2$. [10]

END OF EXAMINATION