UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2010/2011

BSc. / BEd. / B.A.S.S. II

TITLE OF PAPER : DYNAMICS I

COURSE NUMBER : M 255

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- (a) For which values of b are the vectors $\mathbf{v} = (-6, b, 2)$ and $\mathbf{w} = (b, b^2, b)$ orthogonal? [3]
- (b) Find the vector in the same direction as $\mathbf{v} = (-2, 4, 2)$ but which has a length of 6. [3]
- (c) Find the projection of the vector $\mathbf{A} = \mathbf{i} 2\mathbf{j} + \mathbf{k} \text{ onto } \mathbf{B} = 4\mathbf{i} 4\mathbf{j} + 7\mathbf{k}.$ [5]
- (d) (i) Prove that $\nabla \phi$ is a vector perpendicular to the surface $\phi(x, y, z) = c$, where c is a constant. [5]
 - (ii) Find a unit vector that is normal to the surface $2x^2 + 4yz 5z^2 = -10$ at the point (3, -1, 2). [4]

A parametrization of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1; \qquad a, b > 0,$$

traversed in the counterclockwise direction is given by $x = a \cos t$, $y = b \sin t$; $t \ge 0$. Suppose that a particle moves along this ellipse in the counterclockwise direction. Find:

(a)	The position vector \mathbf{r} ;	[1]
(b)	the velocity vector \mathbf{v} ;	[1]
(c)	the speed $ \mathbf{v} $;	[1]
(d)	the acceleration vector a;	[1]
(e)	the magnitude of the acceleration $ \mathbf{a} $;	[1]
(f)	the unit tangent vector $\hat{\mathbf{T}};$	[2]
(g)	the principal unit normal vector $\hat{\mathbf{N}}$;	[5]
(h)	the curvature κ ;	[2]
(i)	the unit binormal vector $\hat{\mathbf{B}}$; and	[2]
(j)	the tangential and normal components of the acceleration of the particle at the point $P\left(\frac{-a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$.	[4]

(a) In spherical coordinates (ρ, ϕ, θ) , the position vector of an arbitrary point (x, y, z) is given by

 $\mathbf{r} = \rho \sin \phi \cos \theta \,\hat{\mathbf{i}} + \rho \sin \phi \sin \theta \,\hat{\mathbf{j}} + \rho \cos \phi \,\hat{\mathbf{k}}.$

Find:

(i)
$$\hat{\rho}$$
; [2]

(ii)
$$\hat{\phi}$$
; [2]

(iii)
$$\hat{\theta}$$
; and [2]

(b) Let $a(t) = a_1(t)\hat{\mathbf{i}} + a_2(t)\hat{\mathbf{j}} + a_3(t)\hat{\mathbf{k}}$ be a differentiable vector function, and let $\phi(t)$ be a differentiable scalar function. Prove that

$$\frac{\mathrm{d}(\phi \mathbf{a})}{\mathrm{d}t} = \phi \frac{\mathrm{d}\mathbf{a}}{\mathrm{d}t} + \mathbf{a} \frac{\mathrm{d}\phi}{\mathrm{d}t}.$$

[4]

(c) If $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ and $r = |\mathbf{r}|$, show that:

(i)
$$\nabla r = \frac{\mathbf{r}}{r}$$
,

(ii)
$$\nabla^2(\log r) = \frac{1}{r^2}$$
. [3,4]

- (a) From a point O, at height h above sea level, a particle is projected under gravity with a velocity of magnitude $\frac{3}{2}\sqrt{gh}$. Find the two possible angles of projection if the particle strikes the sea at horizontal distance 3h from 0. [10 marks]
- (b) Two points A and B are at distance d apart. A particle starts from A and moves in the direction \overrightarrow{AB} with initial velocity u and uniform acceleration a. A second particle starts at the same time from B and moves in the direction \overrightarrow{BA} with initial velocity 2u and retardation a.
 - (i) Prove that the particles collide at time $\frac{d}{3u}$ from the beginning of the motion. [5 marks]
 - (ii) Prove that if the particles collide before the second particle returns to B, then

 $ad < 12u^2$.

[5 marks]

(a) A particle is projected with velocity \mathbf{u} from a point O in a vertical plane through the line of greatest slope of a plane inclined at an angle $-\beta$ to the horizontal. After time T, the particle strikes the inclined plane at the point P, at a distance R from O. If \mathbf{u} makes an angle α with the horizontal, and if $|\mathbf{u}| = u$, show that:

(i)
$$T = \frac{2u\sin(\alpha + \beta)}{g\cos\beta}$$
 and $R = \frac{u^2[\sin(2\alpha + \beta) + \sin\beta]}{g\cos^2\beta}$;
(ii) for constant u and β , R is maximum when $\alpha = \frac{\pi}{4} - \frac{\beta}{2}$. [9,3]

(b) A particle of unit mass moves subject to a central force. Determine the law of force if the path followed by the particle is $r = a \cos \theta$, where a is a constant.[8]

QUESTION 6

- (a) Let $x(t) = c_1 \cos(\omega t + \phi_1)$ and $y(t) = c_2 \cos(\omega t + \phi_2)$ be harmonic functions in standard form with the same angular frequency ω . What do we mean by x leads y, and when does $x \log y$?
- (b) State whether x leads or lags y in each of the following:

(i)
$$x = 2\cos(2t + \frac{\pi}{4}), y = 3\cos(2t + \frac{9\pi}{2})$$
 [2]

(ii)
$$x = \cos(3t), y = \sin(3t)$$
. [2]

- (c) Express $A\cos(\omega t) + B\sin(\omega t)$ in the standard form $C\cos(\omega t + \phi)$ when $A = 3^{\frac{1}{2}}$ and B = -1.
- (d) Find the current I(t) in an RLC-circuit with R=100 ohms, L=0.1 henries, and $C=10^{-3}$ farads, which is connected to a source of voltage $E(t)=155\sin 377t$, assuming zero charge and current when t=0. [13]

(a) The position of a particle moving along the x axis is determined by the equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 4\frac{\mathrm{d}x}{\mathrm{d}t} + 8x = 20\cos(2t).$$

If the particle starts from rest at x = 0, find

- (i) x as a function of t,
- (ii) the amplitude, period, and frequency after a long time. [7,3]
- (b) The weight on a vibrating spring undergoes forced vibrations according to the equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 4x = 8\sin(\omega t),$$

where x is the displacement from the equilibrium position and ω is a constant. If x=0 and $\frac{dx}{dt}=0$ when t=0, find:

- (i) x as a function of t,
- (ii) the period of the external force for which resonance occurs. [8,2]

END OF EXAMINATION