University of Swaziland

Final Examination, May 2011

BSc II, EEng II, BEd II, BASS II

Title of Paper : Calculus II

Course Number : M212

Time Allowed : Three (3) hours

Instructions

1. This paper consists of SEVEN questions.

- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

(a) Given that

$$f(x,y) = x^2 + xy + y^2 \sin\left(\frac{x}{y}\right)$$

(i) Find
$$f_x, f_y, f_{xx}, f_{xy}$$
 and f_{yy} . [5]

(ii) Verify that

$$xf_x + yf_y = 2f ag{3}$$

and that

$$x^2 f_{xx} + 2xy f_{xy} + y^2 f_{yy} = 2f. ag{4}$$

(b) Using a double integral, find the area of the region bounded by the curves xy = 2, $x = 2\sqrt{y}$ and y = 4.[8]

Question 2

(a) Find and classify the critical points of the function

$$f(x,y) = y^3 + x^2 - 8xy + 3x + 6y.$$
 [10]

(b) Use Lagrange multipliers to find the maximum and minimum values of the function

$$f(x, y, z) = xyz$$

subject to

$$x^2 + y^2 + z^2 = 1. ag{10}$$

(a) Consider the cardioid

$$r = 1 - \cos \theta$$
.

- (i) Sketch the cardioid.
- (ii) Find the legth of the cardioid

[12]

- (b) Find an equation in polar co-ordinates for each of the following curves
 - 2x + 3y = 3(i)
 - $x^2 2x + y^2 = 0$ (ii)

[8]

Question 4

Evaluate the following integral

(a)
$$\int_{0}^{1} \int_{0}^{\sqrt{x-x^{2}}} y^{2} dy dx$$
 [10]
(b)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \int_{0}^{\sqrt{1-y^{2}-x^{2}}} x^{3} yz dx dy dz$$
 [10]

(b)
$$\int_0^1 \int_0^{\sqrt{1-z^2}} \int_0^{\sqrt{1-y^2-x^2}} x^3 yz \, dx dy dz$$
 [10]

(a) Suppose that $z = f(x, y), \ x = r \cos \theta$ and $y = r \sin \theta$. Prove that

$$\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = \left(\frac{\partial f}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial f}{\partial \theta}\right)^2. \quad [10]$$

(b) Find the directional derivative of

$$z = f(x, y) = x^3 e^y + xz$$

in the direction of the vector from $P_1(4, 0, 16)$ to $P_2(-2, 1, 4)$. [10]

Question 6

(a) Find the volume under the surface

$$z = x^4 y^4$$

and over the circle $x^2 + y^2 = 1$.

[12]

(b)

(i) Sketch the graph of the curve

$$r = 1 - \sin \theta$$
.

(ii) Find the area of the region enclosed by the curve in (i).

- (a) Find the equation of the tangent surface $xyz^3+yz^2=4$ at the point (1,2,1).
- (b) Find the equation of the plane through the 3 points $P(1,2,3),\ Q(-2,0,4)$ and R(5,2,-1).
- (c) Evaluate

$$\iint_R \frac{x}{\sqrt{x^2 + y^2}} \, \mathrm{d}x \mathrm{d}y$$

where R is the region bounded by the lines y = x, y = -2 and x = 0.