University of Swaziland

Final Examination, 2010/2011

BSc II, Bass II, BEd II

Title of Paper

: Calculus I

Course Number : M211

Time Allowed

: Three (3) hours

Instructions

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

QUESTION 1

18

- (a) Consider the function $f(x) = x^4 2x^2 + 3$.
 - i. Find the intervals on which f is increasing or decreasing. [4]
 - ii. Find the local maximum and local minimum values of f. [3]
 - iii. Find the intervals on which f is concave up and concave down. [4]
 - iv. Find the inflection points of f. [2]
- (b) Find the volume of the solid that lies between the planes x = -1 and x = 1 and whose cross-sections perpendicular to the x-axis are circular disks whose diameters run from the parabola $y = x^2$ to the parabola $y = 2 x^2$ (see below). [7]

QUESTION 2

Evaluate the following limits.

(a)
$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$

(b)
$$\lim_{x \to \infty} x \sin\left(\frac{\pi}{x}\right)$$
 [5]

(c)
$$\lim_{x \to (\frac{\pi}{2})^-} (\sec x - \tan x)$$
 [5]

(d)
$$\lim_{x\to 0} (1-2x)^{1/x}$$
 [6]

QUESTION 3

- (a) i. State (do not prove) the Second Derivative Test for local extrema. [4]
 - ii. Find the local extrema for the function $f(x) = x^3 3x^2 + 3$. [4]
- (b) Find the absolute maximum and absolute minimum values of the function $f(x) = \frac{x}{x^2 + 1} + 1$ on the interval [0, 2].
- (c) Use cylindrical shells to find the volume of the solid obtained when the region bounded by the curve $y = \sqrt{x}$, the line x = 4 and the x-axis is rotated about the x-axis. [7]

______Turn Over

19

[4]

[4]

QUESTION 4

- (a) The region bounded by the graph of $y = x^2$, the lines x = 1 and x = 2 and the x-axis is rotated about the x-axis to generate a solid. Find the volume of the solid. [5]
- (b) Find the length of the curve $y = 2x^{3/2}$ between x = 0 and x = 3. [5]
- (c) Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$ about the x-axis.

QUESTION 5

- (a) Find the length of the curve with parametric equations $x = \cos t$, $y = t + \sin t$, $0 \le t \le \pi$. [10]
- (b) The region bounded by the curves y = x and $y = \sqrt{x}$ is rotated about the line y = 1 to generate a solid. Find the volume of the solid. [10]

QUESTION 6

(a) Investigate the convergence of each series.

i.
$$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$$
 ii. $\sum_{n=1}^{\infty} \left(\frac{1}{1+n}\right)$ [5,5]

(b) Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{x^n}{\sqrt{n}}$. [10]

QUESTION 7

(a) Consider the sequence $\{a_n\}$ defined recursively by

$$a_1 = 2$$
 $a_{n+1} = \frac{1}{2}(a_n + 6)$ for $n = 1, 2, 3, ...$

- i. Use mathematical induction to show that $a_{n+1} > a_n$ for all $n \ge 1$. [4]
- ii. Use mathematical induction to show that $a_n < 6$ for all n.
- iii. Use your answers to i. and ii. to determine whether or not the sequence is convergent.
- (b) Show that the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$. [8]

End of Examination Paper_____