University of Swaziland

Supplementary Examination, July 2011

BSc I, EEng I, BEd I

Title of Paper : Algebra, Trig. and Analytic Geometry

Course Number : M111

Time Allowed : Three (3) hours

Instructions

1. This paper consists of SEVEN questions.

- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1

(a) Find the binomial exapnsion of

$$\left(\frac{x^2}{y} - \frac{2y}{x}\right)^5$$

and simplify term by term.

[7]

(b) Divide

$$\frac{x^4 - x^3 - x^2 + 1}{x + 1}.$$
 [6]

(c) Solve for x (in the range $0 \leqslant x < 2\pi$)

$$\sin 2x + \sin x = 0. ag{7}$$

Question 2

- (a) Find the sum of all multiples of 3 between 9 and 900 inclusive. [6]
- (b) Find all root (real and/or complex):

$$x^4 - 16 = 0. ag{6}$$

(c) Evaluate and express your answer in the form a + ib.

$$2i + \frac{50}{(1-2i)^2}. [8]$$

Question 3

(a) Evaluate

$$\begin{vmatrix}
1 & -1 & 2 & -1 \\
0 & 1 & 0 & 1 \\
-2 & 2 & 1 & 3 \\
0 & 3 & -4 & 0
\end{vmatrix}.$$
[7]

(b) Prove

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta.$$
 [7]

(c) Solve

$$\log_3(8x+1) - 2 = \log_3(x-3).$$
 [6]

Question 4

(a) Find the first four terms of the binomial expansion of

$$\frac{1}{(1+2x)^2}.$$
 [4]

(b) Use mathematical induction to prove

$$1 + 3 + 5 + \dots + (2n - 1) = n^2, \quad n \geqslant 1.$$
 [8]

(c) Given that $\sin A = \frac{12}{13}$ and A is in QI, find

i.
$$\sin 2A$$
 [3]

ii.
$$\cos 2A$$
 [3]

Hence state, with reasons, the quadrant in which the angle 2A lies. [2]

Question 5

Use Cramer's rule to solve

$$x + 2y + 3z = 4,$$

 $2x + 3y + z = 1,$
 $3x + y + 2z = -5.$

[20]

Question 6

(a) Solve

$$2^{x-2} = 3 \cdot 5^{-x}. [4]$$

- (b) The sum of the second and third terms of a GP is 12. If the sum of the third and fourth terms is -36, find the sum of the first 20 terms. [8]
- (c) Describe the locus of points defined by the given equation. Hence make a sketch of the curve.

$$y^2 + 4y + 20x - 56 = 0. ag{8}$$

Question 7

(a) State de Moivre's Theorem.

- [4]
- (b) Find the term independent of x in the binomial expansion of

$$\left(\frac{\dot{x}^2}{y} - \frac{y}{x}\right)^{21}.$$
 [6]

(c) Use mathematical induction to prove that

$$\cos n\pi = (-1)^n, \quad n \in \mathbb{Z}.$$
 [10]