UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2009/2010

BSc. IV

TITLE OF PAPER : FLUID DYNAMICS

COURSE NUMBER : M 455

TIME ALLOWED : THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS.

3. NON PROGRAMMABLE

CALCULATORS MAY BE USED.

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

USEFUL FORMULAE

The gradient of a function $\psi(r, \theta, z)$ in cylindrical coordinates is

$$\nabla \psi = \frac{\partial \psi}{\partial r} \hat{\underline{r}} + \frac{1}{r} \frac{\partial \phi}{\partial \theta} \hat{\underline{\theta}} + \frac{\partial \psi}{\partial z} \hat{\underline{k}}$$

The divergence and curl of the vector field

$$\underline{v} = v_r \hat{\underline{r}} + v_\theta \hat{\underline{\theta}} + v_z \hat{\underline{k}}$$

in cylindrical coordinates are

$$\nabla \cdot \underline{v} = \frac{1}{r} \left\{ \frac{\partial}{\partial r} (rv_r) + \frac{\partial}{\partial \theta} (v_\theta) + \frac{\partial}{\partial z} (rv_z) \right\}$$

and

$$\nabla \times \underline{v} = \frac{1}{r} \det \begin{bmatrix} \frac{\hat{r}}{\partial} & r\frac{\hat{\theta}}{\partial} & \frac{\hat{k}}{\partial} \\ \frac{\partial}{\partial \tau} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ v_r & rv_0 & v_z \end{bmatrix}$$

The divergence of a vector

$$\underline{v} = v_r \hat{r} + v_\lambda \hat{\lambda} + v_\theta \hat{\theta}$$

in spherical coordinates

$$\nabla \cdot \underline{v} = \frac{1}{r^2} \frac{\partial (r^2 v_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial v_{\lambda}}{\partial \lambda} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta v_{\theta})}{\partial \theta}$$

The convective derivative, Laplacian and strain and shear stress in cylindrical coordinates are

$$\begin{split} &\frac{D}{Dt} = \frac{\partial}{\partial t} + v_r \frac{\partial}{\partial r} + \frac{v_\theta}{r} \frac{\partial}{\partial \theta} + v_z \frac{\partial}{\partial z} \\ &\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2} \\ &e_{r\theta} = \frac{1}{2} r \frac{\partial}{\partial r} \left(\frac{V_\theta}{r} \right) + \frac{1}{2r} \frac{\partial V_r}{\partial \theta}, \, s_{r\theta} = 2\mu e_{r\theta} \end{split}$$

Identities

$$\underline{v} \cdot \nabla \underline{v} = \nabla \left(\frac{v^2}{2}\right) - \underline{v} \times \underline{\omega}$$

$$\nabla \times (\nabla \times \underline{a}) = \nabla \nabla \cdot \underline{a} - \nabla^2 \underline{a}$$

1. (a) Describe a continuum model on the example of the density of the air. [4 marks]

(b) For the Lagrange method of treating a continuous medium describe the

i. trajectory of a particle, [2 marks]

ii. velocity, [2 marks]

iii. acceleration. [2 marks]

(c) For the three-dimensional flow

$$\underline{v} = (ay, -ax, f(t)),$$

where a is a constant, find

i. particle path, [5 marks]

ii. streamlines. [5 marks]

QUESTION 2

2. (a) Using the divergence theorem derive the continuity equation in general case. [5 marks]

(b) For a steady incompressible two-dimensional flow the x component of velocity is given by $u = 2x^2$.

i. Determine a possible y component, [4 marks]

ii. How many possible components are there? [1 marks]

(c) Consider a piston-cylinder apparatus. At one instant when the piston is L_0 away from the closed end of the cylinder, the gas density is uniform at $\rho = \rho_0$ and the piston begins to move away from the closed end at $v = v_0$. The gas velocity is one-dimensional and proportional to the distance from the closed end; it varies linearly from zero at the end to $u = v_0$ at the piston.

i. Show that $\left. \frac{d\rho}{dt} \right|_{t=0} = \rho_0 \frac{v_0}{L_0}$, [5 marks]

ii. Find $\rho(t)$. [5 marks]

Hint: Density ρ is independent of x.

3. (a) Derive the convective derivative formula for the density ρ

$$\frac{D\rho}{Dt} = \frac{\partial\rho}{\partial t} + \underline{v} \cdot \operatorname{grad}\rho$$

[5 marks]

(b) Consider steady, one-dimensional, incompressible flow along the x-axis through the converging channel

$$\underline{v} = a \left(1 + \frac{x}{L} \right) \hat{\underline{i}}$$

where a and L are constants.

- i. Find the acceleration of a particle moving along the x-axis as a function of x, [4 marks]
- ii. For the particle located at x=0 at t=0, obtain an expression for its
 - A. position, x_p , as a function of time, [3 marks]
 - B. x-component of acceleration as a function of time. [2 marks]
- iii. Find the Eulerarian acceleration for a particle moving along the x-axis. [1 marks]
- (c) A log is floating in a steady straight river of variable cross section. Find its acceleration
 - i. in the Eulerarian model, [2 marks]
 - ii. in the Lagrange model. [3 marks]

- 4. (a) Consider the two-dimensional, incompressible flow.
 - i. Define the stream function $\psi(x,y)$,

[2 marks]

ii. Show that

$$\psi(x,y) = \int_b^y u(x,\eta)d\eta - \int_a^x v(\xi,b)d\xi$$

where a and b are constants.

[4 marks]

(b) Consider the radially outwards incompressible flow: $v_{\tau} = f(r), v_{\theta} = 0.$ Show that

i.
$$v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$
, $v_{\theta} = -\frac{\partial \psi}{\partial r}$,
ii. $\psi = A\theta$, where A is a constant,

[3 marks] [3 marks]

[1 marks]

[3 marks]

iii. $\operatorname{div}\underline{v}=0$ except at r=0, iv. $v_r=\frac{q}{2\pi r}$, where q is the source strength.

(c) i. Give the definition of vorticity, and ii. Find the vorticity for the two-dimensional shear flow [1 marks]

 $u = \beta y, v = 0.$

[3 marks]

5. (a) i. Explain the following equation

$$dF = \rho \left[\frac{\partial \underline{v}}{\partial t} + u \frac{\partial \underline{v}}{\partial x} + v \frac{\partial \underline{v}}{\partial y} + w \frac{\partial \underline{v}}{\partial z} \right] dx dy dz$$

[1 marks]

ii. Classify the forces acting on a fluid particle. [1 marks]

(b) i. Define a Newtonian fluid, and [2 marks]

ii. Find the dimension of viscosity. [2 marks]

(c) Write in vector form the Navier-Stokes equation for

i. general case, [2 marks]

ii. statics, [2 marks]

iii. Ideal fluid (invisid model). [2 marks]

iv. Incompressible flow. [2 marks]

(d) An infinite plate is moved over a second plate on a layer of liquid with velocity v=0.3 m/sec. For small gap width d=0.3 mm we assume linear velocity profile. The liquid viscosity is $\mu=0.65\times 10^{-3}$ kg/m s and specific gravity SG=0.88. Calculate

i. Kinematic viscosity. [2 marks]

ii. The shear stress on the lower plate. [4 marks]

QUESTION 6

- 6. (a) A cylindrical container, partly filled with liquid, is rotated at a constant angular velocity ω about the vertical axis. After a short time there is no relative motion, the liquid rotates as a rigid body. Using the Euler equation determine the shape of the free surface if the radius of cylinder is R and the original surface height, in the absence of rotation is h_0 . [10 marks]
 - (b) i. Introducing the characteristic length and velocity, re-write the Navier-Stokes equation in dimensionless form.
 - ii. Define Reynolds number. [1 marks]
 - iii. Show that the Reynolds number is dimensionless. [1 marks]
 - (c) i. Define similar flows. [2 marks]
 - ii. How is the idea of the similarity of flows used in the design of experimental models? [1 marks]

- 7. (a) Consider stationary viscous incompressible flow between two stationary plates located at y = 0 and y = 1. Given pressure at x = 0 and x = L is P_0 and P_L respectively, $P_0 > P_L$, and the effect of body forces is negligible.
 - i. Put $\underline{v} = u(x, y)\hat{\underline{i}}$, simplify the Navier-Stokes equations to show that

$$\frac{\partial P}{\partial x} = \mu \frac{\partial^2 u}{\partial y^2}$$

[7 marks]

ii. Show that

$$P(x) = P_0 - \frac{P_0 - P_L}{L}x,$$

[3 marks]

iii. Show that

$$u(y) = y(1-y)\frac{P_0 - P_L}{2\mu L}.$$

[3 marks]

(b) Air flows steadily and at low speed through a horizontal nozzle discharging to the atmosphere. At the nozzle inlet, the area is $0.1\,m^2$. At the nozzle exit, the area is $0.02\,m^2$. The flow is incompressible, and the frictional effects are negligible. Using Bernoulli equation dertermine the pressure required at inlet to produce at outlet speed of $50\,m/s$.

Put
$$\rho = 1.23 \, kg/m^3$$
. [7 marks]