UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2009/2010

B.Sc. / B.Ed. / B.A.S.S. IV

TITLE OF PAPER

: Metric Spaces

COURSE NUMBER

: M431

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(a) Let (X,d) be a metric space and let A be a nonempty subset of X. Prove that for any $x,y\in X$, we have

$$|d(x, A) - d(y, A)| \le d(x, y)$$

[5]

(b) Let $A = \{(x_1, x_2) : 0 \le x_1, 0 \le x_2, x_1 + x_2 \le 2\}$ and let x = (2, 2). Find d(x, A) for the Euclidean, the Max, and for the New York metrics. (Recall that the New York metric is defined by

$$d(x,y) = \begin{cases} |y_2 - x_2| & \text{if } x_1 = y_1 \\ |x_2| + |y_1 - x_1| + |y_2| & \text{if } x_1 \neq y_1. \end{cases}$$

Calculate diam(A) in each case.

[10]

- (c) In each of the following cases, state with careful justification whether (X, d) is a metric space:
 - (a) (i)] $X = \mathbb{R}^2$ equipped with $d((x_1, x_2), (y_1, y_2)) = |x_2 y_2|$;

(ii)
$$X = \mathbb{R}$$
 equipped with $d(x, y) = |x^2 - y^2|$. [1,1]

(d) Let (X, d) be a metric space, and let $A, B, C \subseteq X$. Show that if $A \subseteq B$, then $d(B, C) \leq d(A, C)$.

- (a) Let $X = \mathcal{C}[-1,1]$, and let x(t) = t and $y(t) = t^3$ for $t \in [-1,1]$. Find d(x,y) in $\mathcal{C}[-1,1]$, where d is the
 - (i) uniform metric,
 - (ii) L_1 -metric, [3,2]
- (b) Give an example of a subset A of \mathbb{R} (equipped with the usual metric) such that $\operatorname{diam}(A^{\circ}) < \operatorname{diam}(A)$. [3]
- (c) Let A be an open subset of a metric space (X, d), and let $a \in A$. Is the set $A \setminus \{a\}$ open or closed in X? Justify your answer. [3]
- (d) Let Y be a subspace of the metric space X. Prove the following:
 - (i) $B \subseteq Y$ is open in Y if and only if $B = Y \cap A$ for some open set A in X;[6]
 - (ii) $B \subseteq Y$ is closed in Y if and only if $B = Y \cap F$ for some closed set in X.[3]

- (a) Can you find metric spaces (X, d) where
 - (i) [0,1] is both closed and open? [2]
 - (ii) $[0, \frac{1}{2})$ is open but not closed? [2]
- (b) (i) Let X be a metric space. Using the definition that a set is *open* if its complement is closed, prove that $A \subseteq X$ is open if and only if for every $a \in A$ there is an r > 0 such that the open ball $B(a, r) \subseteq A$. [4]
 - (ii) Let $X = \mathcal{C}[-1,1]$. By considering the point $a(t) \equiv 1$ (i.e. $a(t) = 1 \ \forall \ t \in [-1,1]$) in $\mathcal{C}[-1,1]$, deduce that $A = \{x \in \mathcal{C}[-1,1] : x(0) = 1\}$ is not open in $\mathcal{C}[-1,1]$ with the uniform metric. [3]
- (c) Let X be a nonempty set and let ρ and σ be metrics on X. We say that ρ and σ are equivalent if there exist positive constants α and β such that

$$\alpha \leq \frac{\rho(x,y)}{\sigma(x,y)} \leq \beta$$
 for all $y \in X$ with $x \neq y$.

Prove that if ρ and σ are equivalent metrics on X, then (X, ρ) and (X, σ) have the same open sets. [5]

(d) Let $X = (\mathbb{R}, d)$, and let $A = \bigcup_{n \in \mathbb{Z}_{\geq 0}} (n, n+1)$, where $\mathbb{Z}_{\geq 0} = \{0, 1, 2, \ldots\}$. Sketch the set A, and decide whether A is an open subset, or a closed subset, or neither, of \mathbb{R} . Then find A° , \overline{A} , and $\partial(A)$.

- (a) Let (X, d) be a metric space and (x_n) be a sequence in X. What is meant by saying that (x_n) is *convergent*? [2]
- (b) Decide whether or not the following sequences are convergent in the usual (Euclidean) metric on \mathbb{R}^2 :

(i)
$$x_n = \left(\frac{n^3}{2n^3 + 1}, \frac{1}{n+2}\sin(\frac{n\pi}{2})\right),$$

(ii) $x_n = (3^{-2n}, (-1)^n \exp(\frac{1}{n})).$ [4,4]

- (c) (i) Suppose that (x_n) converges to x in C[a, b] in the uniform metric. Explain what is meant by pointwise convergence. Show that (x_n) converges to x pointwise. [2,4]
 - (ii) Let x_n in C[0,1] be defined by

$$x_n(t) = \begin{cases} nt & \text{if } 0 \le t \le \frac{1}{n}, \\ 1 & \text{if } \frac{1}{n} \le t \le 1. \end{cases}$$

Sketch the graph of $x_n(t)$ and show that (x_n) converges pointwise to the function

$$x(t) = \begin{cases} 0 & \text{if } t = 0, \\ 1 & \text{if } 0 < t \le 1. \end{cases}$$

Deduce that (x_n) is not convergent in C[0,1]. [4]

- (a) Given a function $f:(X,d_1) \longrightarrow (X,d_2)$,
 - (i) When is f said to be continuous at a point $x_0 \in X$ in the $\varepsilon \delta$ sense? [3]
 - (ii) Give an equivalent definition in terms of open sets. [4]
 - (iii) Assuming f is continuous at x_0 , prove that

$$x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)$$
.

[6]

(b) Prove that the function $\pi: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by $\pi(x, y) = x$ is continuous when \mathbb{R}^2 and \mathbb{R} are equipped with their usual metrics. Is π uniformly continuous? Justify your answer. [7]

QUESTION 6

- (a) When are two subsets A and B of a metric space said to be separated? [2]
- (b) Verify that two nonempty disjoint closed sets in a metric space are separated.
 [2]
- (c) Give two alternate definitions of connectedness of a subset M of a metric space X.
- (d) (i) Prove that if X is a connected metric space and $f: X \longrightarrow \mathbb{R}$ is a continuous function, then f(X) is connected.
 - (ii) Deduce that if $f:[0,1] \longrightarrow [0,1]$ is continuous, then there exists an $x \in [0,1]$ such that f(x) = x. [6,6]

(a) Let X be a metric space. When is a subset $M\subseteq X$ said to be: (i) bounded; [1](ii) totally bounded. [2](b) Define compactness of a metric space in terms of (i) open coverings, [1][2] (ii) sequences. (c) Show that a compact set is closed and bounded. [8] (d) Which of the following sets is compact? Give reasons. (i) $\{(x,y): 0 \le x \le y \le 1\}$ in \mathbb{R}^2 , [3] (ii) $\{1, \frac{1}{3}, \frac{1}{3^2}, \dots, \frac{1}{3^n}, \dots\}$ in \mathbb{R} , where $n \in \mathbb{N}$. [3]

END OF EXAMINATION