UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2009/2010

B.Sc. / B.Ed. / B.A.S.S. IV

TITLE OF PAPER

: Metric Spaces

COURSE NUMBER

: M431

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- (a) Let X be a nonempty set.
 - (i) What is meant by "(X, d) is a metric space?" [2]
 - (ii) Let d be the Euclidean metric on \mathbb{R}^2 , and for $x, y \in \mathbb{R}^2$, define

$$d^{1}(x,y) = \begin{cases} d(x,y) & \text{if } x = sy \text{ or } y = sx \text{ for some } s \in \mathbb{R} \\ d(x,0) + d(0,y) & \text{otherwise.} \end{cases}$$

In other words, $d^1(x, y)$ is the distance you travel from x to y if you can only travel along straight lines through the origin. Verify that d^1 is a metric by checking that conditions M1. - M3. in the definition of a metric space hold for d^1 . [3,1,5]

- (b) Let (X,d) be a metric space. Given any four points $x,y,z,t\in X$, prove that $|d(x,y)-d(z,t)|\leq |d(x,z)+d(y,t)|.$ [4]
- (c) A translation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a map given by $T(x) = (x_1 + a, x_2 + b)$ for some fixed point $(a, b) \in \mathbb{R}^2$, where $x = (x_1, x_2) \in \mathbb{R}^2$. Prove that the Euclidian metric d_2 on \mathbb{R}^2 is translation invariant, in the sense that for any two points $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in \mathbb{R}^2 , we have

$$d_2(T(x), T(y)) = d_2(x, y).$$

[3]

- (d) In each of the following cases, state with careful justification whether (X, d) is a metric space:
 - (i) $X = \mathbb{Q}$ equipped with $d(x, y) = (x y)^3$;

(ii)
$$X = \mathbb{Q}^c = \mathbb{R} \setminus \mathbb{Q}$$
 equipped with $d(x, y) = \left| \frac{1}{x} - \frac{1}{y} \right|$. [1,1]

(a) (i) Give the definition of a pseudometric.

[2]

(ii) Let X denote the set of all Riemann integrable functions on [a,b]. (Recall that a Riemann integrable function on [a,b] need not be continuous in [a,b]). For $x,y\in X$, define d by

$$d(x,y) = \int_a^b |x(t) - y(t)| \, \mathrm{d}t.$$

Prove that (X, d) is a pseudometric.

[5]

- (b) Let (X, d) be a metric space, and let A and B be bounded subsets of X. Prove that $A \cup B$ is bounded. Hence, or otherwise, deduce that if x_0 is any point in X, the set A is contained in the closed ball of center x_0 and radius $r = d(x_0, A) + \operatorname{diam}(A)$. [4,1]
- (c) Let $A = \{(x_1, x_2) : 0 \le x_1, 0 \le x_2, x_1 + x_2 \le 2\}$ and let x = (2, 2). Find d(x, A) for the Chicago, the London rail, and for the raspberry pickers metrics. [5]
- (d) Consider the metric space (\mathbb{R}, d) , where d is the usual metric. Prove that the set $\{x\}$ is open as a subspace of (\mathbb{R}, d) but $\{x\}$ is not open as a subset of \mathbb{R} (with the usual metric).

(a) Describe the open balls B(a,3) and the closed balls B[a,3] in \mathbb{R}^2 with respect to the New York metric, where

(i)
$$a = (0,0),$$
 [2,1]

(ii)
$$a = (2,3)$$
. [2,1]

- (b) Show that for any two points x and y of a metric space, there exist disjoint open balls such that one is centered at x and the other is centered at y. [5]
- (c) Prove that a limit point of a set S in a metric space X is either an interior point or a boundary point of S.[3]
- (d) Prove that an isolated point of a set S in a metric space X is a boundary point of S^{c} .
- (e) Prove that a boundary point of a subset S of a metric space X is either a limit point of S or an isolated point of S.

- (a) Prove that:
 - (i) Every convergent sequence is a Cauchy sequence; [3]
 - (ii) If $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ are Cauchy sequences in a metric space (X,d), then the sequence $(d(x_n,y_n))_{n\geq 1}$ is convergent in \mathbb{R} . [5]
- (b) What do you understand by the following:
 - (i) A nowhere dense metric space; [1]
 - (ii) An everywhere dense metric space. [1]
- (c) (i) Suppose that $\{x_n\}$ converges to x in C[a, b] in the uniform metric. Explain what is meant by *pointwise convergence* of a sequence $\{x_n\}$ in C[a, b]. Show that $\{x_n\}$ converges to x pointwise. [2,3]
 - (ii) Let x_n in C[0,1] be defined by

$$x_n(t) = \begin{cases} \frac{nt}{n-1} & \text{if } 0 \le t \le 1 - \frac{1}{n}, \\ n(1-t) & \text{if } 1 - \frac{1}{n} \le t \le 1. \end{cases}$$

Sketch the graph of $x_n(t)$ and show that $\{x_n\}$ converges pointwise to the function

$$x(t) = \begin{cases} t & \text{if } 0 \le t < 1, \\ 0 & \text{if } t = 1. \end{cases}$$

Deduce that $\{x_n\}$ is not convergent in C[0,1] in the uniform metric [1,2,2]

(a) Let f be the function $f: C[0,1] \longrightarrow \mathbb{R}$ defined for $x \in C[0,1]$ by f(x) = x(0). Show that f is not continuous with respect to the L_1 metric on C[0,1] (and the usual metric on \mathbb{R}) by considering the functions $x_n(t)$ given by

$$x_n(t) = \begin{cases} (n-1)t & \text{if } 0 \le t \le \frac{1}{n} \\ 1-t & \text{if } \frac{1}{n} \le t \le 1 \end{cases}$$

(Hint Sketch the functions $x_n(t)$ and consider their limit in the L_1 metric). [7]

(b) Let (X, d) be a metric space with the metric

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 3 & \text{if } x \neq y \end{cases}$$

Show that any Cauchy sequence in X is eventually constant, and deduce that (X, d) is complete. [3]

- (c) (i) Explain what is meant by a *contraction* of a metric space. Show that if $f:[a,b] \longrightarrow [a,b]$ is differentiable, then f is a contraction if and only if there is number r < 1 such that $|Df(x)| \le r$ for every $x \in (a,b)$.
 - (ii) State without proof the Contraction Mapping Theorem.
 - (iii) Show that the mapping $f: [-1,1] \longrightarrow [-1,1]$ defined by $f(x) = \frac{1}{14}(3x^3 2x^2 + 9)$ is a contraction, and deduce that there is unique solution to the equation $3x^3 2x^2 14x + 9 = 0$ in the interval [-1,1]. [10]

- (a) When are two subsets A and B of a metric space said to be separated? [2]
- (b) Verify that two nonempty disjoint closed sets in a metric space are separated. [2]
- (c) Give two alternate definitions of connectedness of a subset M of a metric space X.
- (d) (i) Prove that if X is a connected metric space and $f: X \longrightarrow \mathbb{R}$ is a continuous function, then f(X) is connected.
 - (ii) Deduce that if $f:[0,1] \longrightarrow [0,1]$ is continuous, then there exists an $x \in [0,1]$ such that f(x) = x. [6,6]

- (a) Let X be a set and let d_1 and d_2 be metrics on X. What is meant by saying that the metrics d_1 and d_2 are equivalent? [3]
- (b) Suppose that there are positive constants k and K

$$kd_1(x,y) \le d_2(x,y) \le Kd_1(x,y)$$

for all $x, y \in X$. Show that d_1 and d_2 are equivalent.

- [7]
- (c) Show that on \mathbb{R}^2 , the usual (Euclidean) metric and the Chicago metric are equivalent. [4]
- (d) Explain what is meant by saying that a metric space X is connected. Which of the following subspaces of \mathbb{R} is connected and which is disconnected? Give reasons. (Any theorem about connected subsets of \mathbb{R} that you use should be stated carefully but not proved)
 - (i) $\mathbb{R} \mathbb{Q}$,
 - (ii) $(2,5) \cup (3,\infty)$,
 - (iii) [99, 101).

[3,2,1]

END OF EXAMINATION