University of Swaziland

Supplementary Examination, 2009/10

BSc IV, Bass IV, BEd IV

Title of Paper

: Abstract Algebra II

Course Number

: M423

Time Allowed

: Three (3) hours

Instructions

•

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1

- (a) Find the greatest common divisor of the polynomials $f(x) = x^4 + 4x^3 + 7x^2 + 6x + 2$ and $g(x) = x^3 + 4x^2 + 7x + 4$ over \mathbb{Q} and express it as a linear combination of f(x) and g(x). [8]
- (b) Prove that if R is a ring with unity and N is an ideal of R containing a unit, then N = R. [6]
- (c) Describe all units in each of the following rings.
 - i. \mathbb{Z}_7
 - ii. $Z \times \mathbb{Q} \times \mathbb{Z}_3$

[6]

Question 2

- (a) State whether or not the given function v is a Euclidean valuation for the given integral domain.
 - i) $v(n) = n^2$ for non-zero $n \in \mathbb{Z}$,
 - ii) v(a) = 50 for non-zero values of $a \in \mathbb{Q}$.

[8]

- (b) State Kronecker's theorem. [Do not prove]. [4]
- (c) Given that every element β of $E = F(\alpha)$ can be uniquely expressedd in the form $\beta = b_0 + b_1\alpha + b_2\alpha^2 + \cdots + b_{n-1}\alpha^{n-1}$ where each $b_i \in F$, α algebraic over the field F and $\deg(\alpha, F) \geq 1$, show that if F is finite with q elements, then $F(\alpha)$ has q^n elements. [8]

Question 3

- (a) Use Fermat's theorem to compute the remainder when 8¹²³ is divided by 13. [6]
- (b) For each of the following, find $irred(\alpha, Q)$ and $deg(\alpha, Q)$
 - i. $\sqrt{3} + i$ ii. $\sqrt{\frac{1}{5} + \sqrt{7}}$

[6]

(c) Show that if a polynomial $f(x) \in \mathbb{Z}[x]$ is reducible over Q, then it is also reducible over \mathbb{Z} . [8]

Question 4

(a) Show that for a field F, the set of all matrices of the form

$$\left(\begin{array}{cc} a_{11} & a_{12} \\ 0 & 0 \end{array}\right), \quad a_{ij} \in F$$

is a right ideal but not a left ideal of $M_2(F)$. [6]

- (b) Let $\varphi_{\alpha}: \mathbb{Z}_7[x] \to \mathbb{Z}_7$. Evaluate each of the following for the indicated evaluation homomorphism.
 - i. $\varphi_2(3x^{79} + 5x^{53} + 2x^{43})$
 - ii. $\varphi_3[(x^3+2)(4x^2+3)(x^7+3x^2+1)]$

(c) Show that if D is an integral domain, then D[x] is also an integral domain.

Question 5

- (a) Prove that every field is an integral domain. [6]
- (b) Which of the following are rings with the usual addition and multiplication?
 - $\{a+\sqrt{2}b:a,b\in\mathbb{Z}\}$ i.
 - ii. $M_2(\mathbb{R})$ with zero determinant.

[8]

- (c) Mark each of the following true or false.
 - i. Every finite integral domain is a field.
 - Every division ring is commutative.
 - \mathbb{Z}_6 is not an integral domain.

[6]

Question 6

(a) Classify each of the given $\alpha \in \mathbb{C}$ as algebraic or transcendental over the given field F. If α is algebraic over F, find $\deg(\alpha, F)$.

i.
$$\alpha = 1 + i$$
, $F = \mathbb{Q}$

ii.
$$\alpha = \sqrt{\pi}, F = Q[\pi]$$

iii.
$$\alpha = \pi^2$$
, $F = \mathbb{Q}$

ii.
$$\alpha = \sqrt{\pi}$$
, $F = Q[\pi]$
iv. $\alpha = \pi^2$, $F = Q(\pi^3)$

v.
$$\alpha = \pi^2$$
, $F = Q(\pi)$

[10]

(b) Show that the ring Z₂ × Z₂ is not a field. [5]
(c) Find a polynomial of degree greater zero in Z₄[x] that is a unit. [5]
Question 7
(a) Suppose F is a field, f is an irreducible polynomial over F and g, h are polynomials over F such that f divides gh. Show that either f divides g or f divides h. [10]
(b) Define an ideal N of a ring R. [2]
(c) Find all ideals of Z₁₀ and all maximal ideals of Z₁₈. [8]