University of Swaziland

Final Examination, 2009/10

BSc IV, Bass IV, BEd IV

Title of Paper

: Abstract Algebra II

Course Number

: M423

Time Allowed

: Three (3) hours

Instructions

•

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1

(a) Give the formal definition of a Euclidean ring R. [4] (b) Let R be a Euclidean ring. i. Prove that any two elements a and b in R have a greatest common divisor d. ii. Show that there exists $m, n \in R$ such that d =am + bn. [5] (c) Prove that every finite integral domain is a field. [6] Question 2 (a) Give an example of a ring satisfying the given conditions (do not prove anything). i) A ring without a unity. [2]ii) A finite integral domain. [2]iii) A ring that is not a division ring. [2]iv) A ring with 0 divisors. [2](b) In a ring \mathbb{Z}_n , show that i. zero divisors are those elements that are not coprime. ii. elements that are co-prime cannot be zero divisors. 5 (c) Describe all units in the ring $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$. [2]

Question 3

(a) Let $\varphi_{\alpha}: \mathbb{Z}[x] \to \mathbb{Z}_7$. Evaluate each of the following

i.
$$\varphi_5[(x^3+2)(4x^2+3)(x^7+3x^2+1)]$$
 [5]
ii. $\varphi_4[3x^{106}+5x^{99}+2x^{53}]$ [5]

ii.
$$\varphi_4 \left[3x^{106} + 5x^{99} + 2x^{53} \right]$$
 [5]

- (b) Show that the rings \mathbb{Z} and $2\mathbb{Z}$ are not isomorphic. [4]
- (c) Show that for a field F, the set of all matrices of the form

$$\left(\begin{array}{cc} a & b \\ 0 & 0 \end{array}\right) \quad \text{for } a, b \in F$$

is a right ideal but not a left ideal of the ring R = $M_2(F)$. [6]

Question 4

Which of the following are integral domains and which are fields? Justify your answer.

(a)
$$\mathbb{Z}_2 \times \mathbb{Z}_2$$
 [5]

(b)
$$\{a+ib: a,b\in\mathbb{Q}\}$$
 [5]

(c)
$$\mathbb{Z} \times \mathbb{R}$$
 [5]

(d)
$$\mathbb{R}[x]$$
 [5]

Question 5

(a) Determine which of the following polynomials in $\mathbb{Z}[x]$ satisfy an Eisenstein criterion for irreducibility over Q

- i. $4x^{10} 9x^3 + 24x 18$ [4]
- ii. $2x^{10} 25x^3 + 10x^2 30$ [4]
- b. Express $f(x) = x^3 + 2x + 3$ over $\mathbb{Z}_5[x]$ as a product of irreducible polynomial over $\mathbb{Z}_5[x]$. [6]
- c. Prove that, if D is an integral domain, then D[x] is also an integral domain. [6]

Question 6

- (a) Let α be a zero of x^2+x+1 in the extention field of \mathbb{Z}_2 . Give the addition and multiplication tables for the four elements of $\mathbb{Z}_2(\alpha)$. [6]
- (b) Show that the polynomial $f(x) = x^p + a$ in $\mathbb{Z}_p[x]$ is not irreducible for any $a \in \mathbb{Z}_p$. [5]
- (c) For each of the given algebraic numbers $\alpha \in \mathbb{C}$, find $\ln(\alpha, \mathbb{Q})$ and $\deg(\alpha, \mathbb{Q})$

i.
$$\sqrt{3-\sqrt{6}}$$
 [3]

ii.
$$\sqrt{\frac{1}{3} + \sqrt{7}}$$
 [3]

iii.
$$\sqrt{2}+i$$
 [3]

Question 7

- (a) Find all the monic irreducible polynomials of degree 2 over \mathbb{Z}_3 . [9]
- (b) Prove that every field is an integral domain. [7]
- (c) Factor the polynomial $4x^2 4x + 8$ as a product of irreducibles in $\mathbb{Z}_{11}[x]$. [4]