UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2009/2010

BSc./ BEd./B.A.S.S IV

TITLE OF PAPER : NUMERICAL ANALYSIS II

COURSE NUMBER : M 411

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS.

3. NON PROGRAMMABLE

CALCULATORS MAY BE USED.

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1. (a) Approximate x^2e^x on [0,1] using a linear least squares polynomial.

[10 marks]

(b) Find a linear polynomial that best fits the data

in the least squares sense.

[10 marks]

QUESTION 2

- 2. (a) For the Chebyshev polynomials $\{T_0(x), T_1(x), T_2(x), \dots\}$ prove the following properties given that i and j are positive integers.
 - i. $T_i(T_j(x)) = T_{ij}(x)$.

[4 marks]

ii. If j > i, then $T_i(x)T_j(x) = \frac{1}{2}[T_{i+j}(x) + T_{j-i}(x)]$.

[6 marks]

(b) Prove that the trigonometric functions $\{\cos nx : n = 0, 1, 2, ...\}$ are orthogonal on the closed interval $[0, 2\pi]$ with respect to the weight function w(x) = 1. [10 marks]

QUESTION 3

3. Use a single step of the modified Euler method to solve the Initial Value problem:

$$x'' - 3x' + 2x = 6e^{-t}, 0 \le x \le 1, x(0) = x'(0) = 2,$$

for both x(0.1) and x'(0.1).

[20 marks]

QUESTION 4

4. (a) Consider initial value problem

$$y' = 1 - y$$
, $0 \le t \le 1$, $y(0) = 0$

- i. Use one step of the Euler method to compute y(0.1). [3 marks]
- ii. Compute y(0.2) using the linear multi-step method

$$y_{n+1} = y_n + \frac{h}{2}[f_{n-1} + f_n]$$

using both y(0) = 0 and the value of y(0.1) from 4(a)i. [3 marks]

- iii. Use another step of method in 4(a)ii to compute y(0.3). [3 marks]
- (b) Discuss the convergence of the linear multi-step method

$$y_{n+2} = -3y_n + 4y_{n+1} - 2hf_n.$$

[11 marks]

QUESTION 5

5. (a) For the boundary value problem

$$u_{xx} + u_{yy} = xy$$
, $0 < x < 1$, $0 < y < 1$,
 $u(0,y) = 0$, $u(1,y) = y$, $0 \le y \le 1$,
 $u(x,0) = 0$, $u(x,1) = x$, $0 \le y \le 1$,

replace the derivatives u_{xx} and u_{yy} with central difference approximations, and use a uniform grid with step size $h = \frac{1}{2}$ to compute the approximate value of the solution u at (x, y) = (1, 1). [10 marks]

(b) Consider the wave equation

$$u_{tt} = u_{xx}, \ 0 < x < 1, \ t > 0,$$

with boundary conditions

$$u(0,t) = u(1,t) = 0, t > 0,$$

and initial conditions

$$u(x,0) = x(1-x), u_t(x,0) = 0, 0 \le x \le 1.$$

Write down the corresponding finite difference problem based on central difference approximation of the derivatives. [10 marks]

QUESTION 6

Consider the differential problem;

$$u_t(x,t) = u_{xx}(x,t), \ 0 < x < 1, \ t > 0,$$

$$u(0,t) = 0, \ u_x(1,t) = u(1,t) - 1, t > 0,$$

$$u(x,0) = x(1-x), \ 0 \le x \le 1.$$
(1)

Suppose that the parabolic diffusion equation (1) is approximated by replacing u_t with a backward difference, and that u_{xx} is replaced by a central difference. Also, suppose that the derivative u_x in the boundary condition at x = 1 is replaced by a backward difference approximation. Then,

(a) Show that the resulting finite difference equations may be written in matrix form as

$$A\mathbf{u}^{(n)} = \mathbf{u}^{(n-1)} + \mathbf{v}$$
, where $n = 1, 2, ...$

Identify the square matrix A, and the vectors $\mathbf{u}^{(n)}$ and \mathbf{v} . [12 marks]

(b) Compute the leading terms of the truncation error for this numerical scheme. [8 marks]

QUESTION 7

7. Consider the differential problem;

$$u_t(x,t) = u_{xx}(x,t), 0 < x < 1, t > 0,$$

 $u(0,t) = u(1,t) = 0, t > 0,$
 $u(x,0) = \sin \pi x, 0 \le x \le 1.$

- (a) Deduce the fully explicit numerical scheme resulting from using a forward difference approximation for the derivative u_t , and a central difference approximation for the derivative u_{xx} . [10 marks]
- (b) Prove that the scheme is stable provided

$$\nu := \frac{\Delta t}{(\Delta x)^2} \le \frac{1}{2},$$

where Δt and Δx are the step sizes in the t and x directions respectively. [10 marks]