UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2009/2010

BSc./ BEd./B.A.S.S IV

TITLE OF PAPER : NUMERICAL ANALYSIS II

COURSE NUMBER : M 411

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS.

3. NON PROGRAMMABLE

CALCULATORS MAY BE USED.

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1. (a) Approximate e^x on [-1,1] using a linear least squares polynomial.

[10 marks]

(b) For the data

if the problem is to find a quadratic polynomial that best fits the data in the least squares sense, then deduce the normal equations in matrix form

$$A\mathbf{a} = \mathbf{b} \tag{1}$$

Explicitly dentify the vectors a and b, and the square matrix A.

DO NOT solve the linear system (1). [10 marks]

QUESTION 2

- 2. (a) Show that the Chebyshev polynomials $\{T_0(x), T_1(x), T_2(x), \dots\}$ of the first kind are orthogonal on the open interval (-1,1) with respect to the weight function $w(x) = \frac{1}{\sqrt{1-x^2}}$. [10 marks]
 - (b) Use the Gram-Schmidt process to find the degree 0 to 1 orthogonal polynomials $(\phi_0(x))$ and $\phi_1(x)$ respectively) in the closed interval [1,2] with respect to the weight function w(x) = x.

If $p(x) := a_0 \phi_0(x) + a_1 \phi_1(x)$ is a least squares approximation to $f(x) = x^2 + 2x - 3$, then determine the constant a_0 . [10 marks]

QUESTION 3

3. Use a single step of the modified Euler method to solve the Initial Value problem:

$$x'' - 2x' + x = te^t - t$$
, $0 \le x \le 1$, $x(0) = 0$, $x'(0) = 1$,

for x(0.1) and x'(0.1). [20 marks]

QUESTION 4

4. (a) Solve the initial value problem

$$y'(x) = -y + x\sqrt{y}, 2 \le x \le 4, y(2) = 2$$

for y(2.1) using one step of each of the following;

i. Taylor series method of order 2.

- [3 marks]
- ii. The single step Adams-Bashforth method.
- [3 marks]

iii. The Runge-Kutta method of order 2.

[3 marks]

(b) Given the linear multi-step method

$$y_{n+1} = -\frac{3}{2}y_n + 3y_{n-1} - \frac{1}{2}y_{n-2} + 3hf_n$$

for solving the initial value problem

$$y'(x) = f(x, y), a \le x \le b, y(a) = \alpha$$

determine whether or not it is convergent.

[11 marks]

QUESTION 5

5. (a) Solve the boundary value problem

$$u_{xx} + u_{yy} = x + y, 0 < x < 1, 0 < y < 1,$$

 $u(0, y) = 1, u(1, y) = 1 - y, 0 \le y \le 1,$
 $u(x, 0) = 1, u(x, 1) = 1 - x, 0 \le y \le 1,$

using the Finite Difference method on a rectangular grid with a stepsizes $h=\frac{1}{3}$ and $k=\frac{1}{2}$ in the x and y directions respectively. [12 marks]

(b) Let α and β be constants. Suppose that the finite difference scheme

$$U_j^{n+1} = \alpha U_j^n + \beta U_{j-1}^n$$

is used to approximate the solution of the advection equation

$$u_t + au_x = 0$$

where a > 0 is a constant and U_j^n approximates $u(x_j, t_n)$ in the usual notation. Then, determine both α and β so that the scheme agrees with the Taylor series expansion of $u(x_n, t_{n+1})$ to as high an order as possible. [8 marks]

QUESTION 6

6. Consider the differential problem;

$$u_t(x,t) = u_{xx}(x,t), \ 0 < x < 1, \ t > 0,$$

$$u_x(0,t) = u(0,t), \ u(1,t) = 1, t > 0,$$

$$u(x,0) = x(1-x), \ 0 \le x \le 1.$$
(2)

Suppose that the parabolic diffusion equation (2) is approximated by replacing u_t with a forward difference, and that u_{xx} is replaced by a central difference. Also, suppose that the derivative u_x in the boundary condition at x=0 is replaced by a forward difference approximation. Then,

(a) Show that the resulting finite difference equations may be written in matrix form as

$$\mathbf{u}^{(n+1)} = B\mathbf{u}^{(n)} + \mathbf{v}$$
, where $n = 1, 2, ...$

Identify the square matrix B, and the vectors $\mathbf{u}^{(n)}$ and \mathbf{v} . [12 marks]

(b) Compute the leading terms of the truncation error for this numerical scheme. [8 marks]

QUESTION 7

7. Consider the differential problem;

$$u_t(x,t) = u_{xx}(x,t), 0 < x < 1, t > 0,$$

 $u_x(0,t) = u(1,t) = 0, t > 0,$
 $u(x,0) = \sin \pi x, 0 \le x \le 1.$

- (a) Deduce the fully implicit numerical scheme resulting from using a backward difference approximation for the derivative u_t , and a central difference approximation for the derivative u_{xx} . [10 marks]
- (b) Prove that the scheme is unconditionally stable. [10 marks]