UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2009/2010

BSc. /BEd. /B.A.S.S III

TITLE OF PAPER

: REAL ANALYSIS

COURSE NUMBER : M 331

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- 1. (a) Let S be a set of real numbers. Explain what is meant by the following.
 - i. A real number α is the supremum for S.

[3 marks]

ii. A real number β is the infimum for S.

[3 marks]

(b) Find, if they exist, the supremum and infimum of the set:

$$S := \{ x \in \mathbb{R} : |x - 1| = |x| \}$$

4 marks

- (c) Decide whether the following statements are true or false. Justify your answers.
 - i. There exists a set of real numbers with a minimum but no infimum.

[3 marks]

- ii. The sum of a rational number and an irrational number is always irrational. [3 marks]
- (d) Let A be a non-empty subset of \mathbb{R} and let $f, g : A \to \mathbb{R}$ be functions, each with a bounded range in \mathbb{R} . Show that

$$\sup\{f(x) + g(x) : x \in A\} \le \sup\{f(x) : x \in A\} + \sup\{g(x) : x \in A\}$$

[4 marks]

QUESTION 2

2. (a) Let (x_n) be a sequence of real numbers and let $l \in \mathbb{R}$. Explain precisely what is meant by the statement

$$x_n \to l \text{ as } n \to \infty$$

[3 marks]

Use this definition to show that

i.

$$\frac{n}{n+1} \to 1 \text{ as } n \to \infty$$

[4 marks]

ii. Show that if

$$x_n \to l \text{ as } n \to \infty \text{ and } y_n \to m \text{ as } n \to \infty$$

then
$$x_n - y_n \to l - m$$
 as $n \to \infty$.

[5 marks]

(b) Consider the sequence (x_n) defined by

$$x_1 = 10$$
, $x_{n+1} = \frac{x_n^2 - 8}{2x_n - 6}$, for $n \ge 1$

i. Show that $x_n \geq 4$ for all $n \geq 1$.

[3 marks]

ii. Prove that (x_n) is a decreasing sequence.

[3 marks]

iii. Deduce that (x_n) is convergent and find its limit. State any theorem used. [2 marks]

QUESTION 3

- 3. (a) i. Explain what it means to say that a function $f:[a,b] \to \mathbb{R}$ is continuous at a point $c \in (a,b)$. [2 marks]
 - ii. Give an example of a function $f: [-1, 1] \to \mathbb{R}$ which is not continuous at x = 0. [2 marks]
 - iii. Use the definition of $\lim_{x\to a} f(x)$ to show that

$$\lim_{x \to 0} (|x| + x) = 0$$

[5 marks]

(b) Use the Intermediate Value theorem to show that the equation

$$e^x + x = 2$$

has a solution in the interval (0,1).

[5 marks]

- (c) Decide whether the following statements are true or false. Justify your answers.
 - i. All bounded functions $f:[0,1] \to \mathbb{R}$ are continuous. [3 marks]
 - ii. There is a continuous function $f:(0,1)\to\mathbb{R}$ which does not attain a minimum value on (0,1). [3 marks]

- 4. (a) Let $f:(a,b)\to\mathbb{R}$ be a function.
 - i. What does it mean to say that f is differentiable at $c \in (a, b)$.

[2 marks]

- ii. Show that if f is differentiable at $c \in (a, b)$ then f is continuous at point c. [4 marks]
- iii. Give an example of a function $f:(-1,1)\to\mathbb{R}$ that is continuous at x=0 but not differentiable there. [2 marks]
- (b) i. State the Mean Value Theorem.

[2 marks]

ii. Let $f:[a,b] \to [a,b]$ be differentiable on [a,b]. Also, let

$$|f'(x)| \le K, \forall x \in [a, b]$$

and for some $K \in \mathbb{R}$. Then, show that

$$|f(x) - f(y)| \le K|x - y|, \forall x, y \in [a, b]$$

[4 marks]

(c) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) := \begin{cases} 2x, & \text{if } x \le 0\\ (x+1)^2, & \text{if } x > 0 \end{cases}$$

i. Show that f is differentiable at x = 0.

[4 marks]

ii. Is f continuous at x = 0? Justify your answer.

[2 marks]

- 5. (a) Let $f:[a,b] \to \mathbb{R}$ be a function that is differentiable on (a,b). If f'(x) is non-negative on (a,b), then use the Mean Value Theorem or otherwise to show that f is increasing on (a,b). [6 marks]
 - (b) Use the Mean Value theorem to show that

i.
$$\frac{1}{4} < 4 - \sqrt{14} < \frac{1}{3}$$
. [4 marks]

ii.
$$\frac{1}{2} < \ln 2 < 1$$
. [4 marks]

iii.
$$1 + x < e^x < \frac{1}{1 - x}$$
 for $0 < x < 1$. [6 marks]

QUESTION 6

- 6. (a) Let $\sum a_n$ be a series in the set \mathbb{R} of real numbers. Then, explain what is meant by the following statements.
 - i. The k-th partial sum. [2 marks]
 - ii. $\sum a_n$ converges. [2 marks]
 - iii. $\sum a_n$ is absolutely convergent. [1 marks]
 - (b) Prove that if $\sum a_n$ converges, then $\lim(a_n) = 0$. [3 marks]
 - (c) Use part 6b above to show that

$$\sum \left(1+\frac{1}{n}\right)$$

diverges. [2 marks]

- (d) Starting from the Cauchy convergence criterion prove that: If $\sum a_n$ is absolutely convergent, then $\sum a_n$ converges. [6 marks]
- (e) Determine whether the series

$$\sum (-1)^{n+1} \frac{1}{n}$$

it converges or diverges. State any theorems used. [4 marks]

- 7. (a) Explain in detail what is meant by saying that a function $f:[a,b]\to\mathbb{R}$ is Riemann integrable on [a,b]. [10 marks]
 - (b) Use part 7a above to determine whether or not the function $f:[0,1]\to\mathbb{R}$ defined by

$$f(x) := \begin{cases} 0, & \text{if } x \text{ is rational} \\ 2, & \text{otherwise} \end{cases}$$

is Riemann integrable.

[6 marks]

- (c) Decide whether the following statements are true or false. Justify your answers.
 - i. There is a bounded function $f:[0,1] \to \mathbb{R}$ which is not Riemann integrable. [2 marks]
 - ii. There is an Riemann integrable function $f:[0,1]\to\mathbb{R}$ and a function $g:[0,1]\to\mathbb{R}$ which is not Riemann integrable such that the product function $fg:[0,1]\to\mathbb{R}$ is Riemann integrable. [3 marks]