UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2009/2010

BSc. /BEd. /B.A.S.S III

TITLE OF PAPER

: REAL ANALYSIS

COURSE NUMBER : M 331

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- 1. (a) Let S be a set of real numbers. Explain what is meant by the following.
 - i. A real number α is the maximum of S.

[3 marks]

ii. A real number β is the minimum of S.

[3 marks]

(b) Find, if they exist, the maximum and minimum of the set:

$$S := \{x \in \mathbb{R} : x + |x - 1| = 2 + |x|\}$$

[4 marks]

- (c) Determine whether the following statements are true or false. Justify your answers.
 - i. The sum of a rational number and an irrational number is always irrational. [3 marks]
 - ii. There exists a set of real numbers with a maximum but no supremum. [3 marks]
- (d) Let A be a non-empty subset of $\mathbb R$ and let $f,g:A\to\mathbb R$ be functions, each with a bounded range in $\mathbb R$. Show that

$$\inf\{f(x) : x \in A\} + \inf\{g(x) : x \in A\} \le \inf\{f(x) + g(x) : x \in A\}$$

[4 marks]

QUESTION 2

2. (a) Let (x_n) be a sequence of real numbers and let $l \in \mathbb{R}$. Explain precisely what is meant by the statement

$$x_n \to l \text{ as } n \to \infty$$

[3 marks]

Use this definition to show that

i.

$$\frac{2n-1}{3n+8} \to \frac{2}{3} \text{ as } n \to \infty$$

[4 marks]

ii. Starting from the theorem that a sequence of real numbers that is convergent is also bounded, show that if

$$x_n \to l$$
 as $n \to \infty$ and $y_n \to m$ as $n \to \infty$

then $x_n y_n \to lm$ as $n \to \infty$.

[5 marks]

(b) Consider the sequence (x_n) defined by

$$x_1 = 2$$
, $4x_{n+1} = x_n^2 + 3$, for $n \ge 1$

i. Show that $1 < x_n < 3$ for all $n \ge 1$.

[3 marks]

ii. Prove that (x_n) is a decreasing sequence.

[3 marks]

iii. Deduce that (x_n) is convergent and find its limit. State any theorem used. [2 marks]

QUESTION 3

- 3. (a) i. Explain what it means to say that a function $f:[a,b]\to\mathbb{R}$ is continuous at a point $c\in(a,b)$. [2 marks]
 - ii. Give an example of a function $f: [-1,1] \to \mathbb{R}$ which is not continuous and yet the function $|f|: [-1,1] \to \mathbb{R}$ defined by |f|(x) := |f(x)| is continuous. [2 marks]
 - iii. Use the definition of $\lim_{x\to a} f(x)$ to show that

$$\lim_{x \to 0} \frac{x^2}{|x|} = 0, \ (x \neq 0)$$

[5 marks]

(b) State the Intermediate Value theorem and use it to show that the equation

$$x^2 = \cos x$$

has a solution in the interval $(0, \frac{\pi}{2})$.

[5 marks]

- (c) Determine whether the following statements are true or false. Justify your answers.
 - i. All functions $f:[-1,1] \to [-1,1]$ satisfy f(x)=x at any $x \in [-1,1].$ [3 marks]
 - ii. There is a continuous function $f: [-1,0) \to \mathbb{R}$ which does not attain a maximum value on [-1,0). [3 marks]

- 4. (a) Let $f:(a,b)\to\mathbb{R}$ be a function.
 - i. Explain what is meant by saying that f is differentiable at $c \in (a, b)$.

[2 marks]

- ii. Show that if f is differentiable at $c \in (a, b)$ then f is continuous at point c. [4 marks]
- iii. Is the converse of part 4(a)ii above true? Justify your answer.

[2 marks]

(b) i. State the Mean Value Theorem.

[2 marks]

ii. Let $f:[a,b] \to [a,b]$ be differentiable on [a,b]. Also, let

$$|f'(x)|<1,\,\forall x\in[a,b]$$

Then, show that

$$|f(x) - f(y)| < |x - y|, \forall x, y \in [a, b]$$

[4 marks]

(c) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) := \left\{ \begin{array}{ll} x-1, & \text{if } x \leq 1 \\ \ln x, & \text{if } x > 1 \end{array} \right.$$

i. Show that f is differentiable at x = 1.

[4 marks]

ii. Is f continuous at x = 1? Justify your answer.

[2 marks]

5. (a) Use the Mean Value theorem to show that

i.
$$\frac{b-a}{2\sqrt{b}} < \sqrt{b} - \sqrt{a} < \frac{b-a}{2\sqrt{a}}$$
 for $0 < a < b$. [4 marks]

ii.
$$1 - \frac{a}{b} < \ln \frac{b}{a} < \frac{b}{a} - 1$$
 for $0 < a < b$. [5 marks]

iii.
$$1 + x < e^x < \frac{1}{1 - x}$$
 for $0 < x < 1$. [6 marks]

(b) Let a sequence (x_n) of real numbers be defined by

$$x_n := 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \text{ for } n \ge 1$$

Use part 5a above or otherwise to show that

$$x_{n+1} < x_n \text{ for } n \ge 1. \tag{5 marks}$$

QUESTION 6

6. (a) Let $\sum a_n$ be a series in the set \mathbb{R} of real numbers. Then, explain what is meant by the following statements.

i. The k-th partial sum. [2 marks]

ii. $\sum a_n$ converges. [2 marks]

iii. $\sum a_n$ is absolutely convergent. [1 marks]

(b) Prove that if $\sum a_n$ converges, then $\lim(a_n) = 0$. [3 marks]

(c) Use part 6b above to show that

$$\sum \frac{n}{n+1}$$

diverges. [2 marks]

(d) Starting from the Cauchy convergence criterion prove that:

If $\sum a_n$ is absolutely convergent, then $\sum a_n$ converges. [6 marks]

(e) For the series

$$1 - \frac{1}{2} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$

determine whether it converges or diverges. State any theorems used. [4 marks]

- 7. (a) Explain in detail what it means for a function $f:[a,b] \to \mathbb{R}$ to be Riemann integrable on [a,b]. [10 marks]
 - (b) Use part 7a above to show that the function $f:[0,1] \to \mathbb{R}$ defined by

$$f(x) := \left\{ \begin{array}{ll} +1, & \text{if } x \text{ is rational} \\ -1, & \text{otherwise} \end{array} \right.$$

is not Riemann integrable.

[6 marks]

- (c) For each of the following statements prove if true otherwise give a counterexample.
 - i. Every bounded function $f:[0,1] \to \mathbb{R}$ is Riemann integrable.

[2 marks]

ii. There is a function $f:[0,1]\to\mathbb{R}$ such that the function $|f|:[0,1]\to\mathbb{R}$ defined by |f|(x):=|f(x)| is Riemann integrable, but f is not Riemann integrable. [3 marks]