University of Swaziland

Supplementary Examination, 2009/10

BSc III, Bass III, BEd III

Title of Paper : Abstract Algebra I

Course Number : M323

Time Allowed : Three (3) hours

Instructions

1. This paper consists of SEVEN questions.

- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1

- (a) Suppose that d, a, b are positive integers, (a, d) = 1 and that d divides ab. Proves that d divides b. [5]
- (b) Let H be a subgroup of a group G and let, for $a, b \in G$ aRb if and only if $a = g^{-1}bg$ for some $g \in H$.

Show that R is an equivalence relation on the set G.[6]

(c) The table below may be completed to define a binary operation * on the set $G = \{e, a, b, c\}$ in such a way that (G, *) becomes a group. Assume this is possible and compute the missing entries

(d) Prove that, in any group G, the identity element is unique. [3]

Question 2

(a) Determine whether the set \mathbb{Z} with respect to the binary operation

$$a * b = a + b - 2010$$

is a group. [7]

(b) Find the greatest common divisor d of the numbers 102 and 42 and express it in the form

$$d = 102m + 42n \text{ for some } m, n \in \mathbb{Z}.$$
 [5]

(i) State Lagrange's Theorem

- [2]
- (ii) Prove that every finite group of prime order is cyclic. [6]

Question 3

(a) Let H be the subset

$$\{\rho_0 = (1), \rho_1 = (1\,2\,3\,4), \rho_2 = (1\,3)(2\,4), \rho_3 = (1\,4\,3\,2)\}$$

of symmetric group D_4 .

- (i) Show that H is a subgroup of D_4 . [5]
- (ii) Is H cyclic? Justify your answer. [5]
- (b) Let $\phi G \Longrightarrow H$ be an isomorphism of groups.
 - (i) Prove that, if e_g is the identity element of G, then $(e_g)\phi$ is the identity element of H.
 - (ii) Prove that, for any $a \in G$,

$$(a^{-1})\phi = \left[(a)\phi \right]^{-1}.$$
 [6]

(c) Determine all possible solutions of

$$3x \equiv 5 \pmod{11}.$$
 [4]

Question 4

- (a) Prove that a non-abelian group of order 2p, p prime, contains at least one element of order p. [6]
- (b) Consider the following permutations in S_6

$$\alpha = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{array}\right), \quad \beta = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 3 \end{array}\right).$$

Compute

- (i) $\alpha\beta$
- (iii) β^{-2}

- (iv) $\alpha\beta^2$
- (ii) β^2 (v) $(\alpha\beta)^{-1}$

- [10]
- (c) Write the permutations α and β in (b) as a product of disjoint cycles in S_6 .

Question 5

- (a) Prove that every subgroup of a cyclic group is cyclic.
- (b) Let H be the subgroup of \mathbb{Z}_{20} generated by the element 8, i.e. H = <8>. Find all cosets of H in \mathbb{Z}_{20} .
- (c) Prove that if G is a group and that $\forall a \in G, a^2 = e$, then G is abelian. [6]

Question 6

- (a) Prove that every group of prime order is cyclic. [5]
- (b) Show that the set $G = Q \{0\}$ with respect to the operation

$$a * b = \frac{ab}{10}$$

is a group.

[9]

(c) Prove that if $(ab)^{-1} = a^{-1}b^{-1}$ for every $a, b \in G$ where G is a group, then G is abelian. [6]

Question 7

(a) Find all subgroups of \mathbb{Z}_{20} and draw a lattice diagram. [8]

(b)

- (i) Define a subgroup of a group.
- (ii) Find the number of elements in the cyclic subgroup <30> of \mathbb{Z}_{42} (do not list the elements).
- (d) Show that \mathbb{R} under addition is isomorphic to \mathbb{R}^+ under multiplication. [5]