University of Swaziland

Final Examination, 2009/10

BSc III, Bass III, BEd III

Title of Paper : Abstract Algebra I

Course Number : M323

Time Allowed

: Three (3) hours

Instructions

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

Question 1

- (a) Show that if (a, m) = 1 and (b, m) = 1, then (ab, m) = 1 where $a, b, m \in \mathbb{Z}$. [4]
- (b) Prove that the binomial coefficient ${}_{p}C_{r} = \begin{pmatrix} p \\ r \end{pmatrix}$ with 0 < r < p is divisible by the positive prime p. [4]
- (c) Use (b) to show that when $a, b, p \in \mathbb{N}$, p prime, then

$$(a+b)^p \equiv a^p + b^p \pmod{p}.$$
 [4]

- (d) Prove that a group of prime order has no proper subgroup. [4]
- (e) Prove that every group of prime order is cyclic. [4]

Question 2

- (a) Let G be the set of all 2×2 matrices of the form $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$ where $a, b, c \in \mathbb{Q}, ac \neq 0$. Show that, with respect to matrix maultiplication, G is a group. [8]
- (b) Solve the system

$$3x \equiv 2 \pmod{5}$$
$$2x \equiv 1 \pmod{3}.$$

[8]

(c) Give an example of a group satisfying the given conditions or, if there is no such group, say so (Do not prove anything).

- (i) A finite non-abelian group
- (ii) A non-abelian cyclic group.

[4]

Question 3

(a) Let n be a positive integer greater than 1 and let, for $a, b \in \mathbb{Z}$

$$aRb \iff a \equiv b \pmod{n}$$
.

Prove that R is an equivalence relation on \mathbb{Z} . [5]

- (b) Prove that every cyclic group is abelian. [5]
- (c) Let H be the subset

$$\{\rho_0 = (1), \rho_1 = (123), \rho_2 = (132)\}$$

of symmetric group S_3 .

- (i) Show that H is a subgroup of S_3 . [5]
- (ii) Show that H is cyclic. [5]

Question 4

Let

$$\alpha = \left(\begin{array}{cccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 8 & 1 & 7 & 5 & 3 & 4 & 2 \end{array}\right)$$

and

$$\beta = \left(\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 1 & 8 & 3 & 4 & 5 & 2 & 6 \end{array}\right).$$

(a) Express α and β as products of disjoint cycles, and then as products of transpositions. For each of them, say whether it is an even permutation or an odd one, [7]

Question 5 (a) (i) State Cayley's theorem [do not prove anything] [4] (ii) Let (\mathbb{R}, \bullet) be the multiplicative group of all positive real numbers and $(\mathbb{R}, +)$ be the additive group of real numbers. [6]Show that (\mathbb{R}, \bullet) is isomorphic to $(\mathbb{R}, +)$. (b) (i) Find the number of generators in each of the following cyclic groups \mathbb{Z}_{30} and \mathbb{Z}_{42} . |6| (ii) Determine the cosets of H = <4> in $\mathbb{Z} + 8$. [4]Question 6 (a) Solve the following system $2x \equiv 1 \pmod{5}$ $3x \equiv 4 \pmod{7}.$ [7](b) Determine whether the given set G with respect to the given operation is a group. (i) Define * on $G = \mathbb{Q}^+$ by $a * b = \frac{1}{2}ab$, $\forall a, b \in$ $G = \mathbb{Q}^+$. 5 (ii) Define * on $G = \mathbb{R}$ by $a*b = ab+a+b \ \forall \ a,b \in$ [5] (c) Show that \mathbb{Z}_6 and S_3 are not isomorphic. [3]

(b) Compute α^{-1} , $\beta^{-1}\alpha$, $(\alpha\beta)^{-1}$.

(c) Find the order of β and compute β^{2010} .

[7]

[6]

Question 7

- (a) Find the number of elements in each of the cyclic subgroups [do not list the elements]
 - (i) $< 30 > \text{ of } \mathbb{Z}_{42}$ [3]
 - (ii) $<15> \text{ of } \mathbb{Z}_{48}$ [3]
- (b) For \mathbb{Z}_{12} , find all subgroups and give a lattice diagram. [7]
- (c) State Lagrange's theorem [do not prove]. [2]
- (d) Using (c) above, or otherwise, show that \mathbb{Z}_p has no proper subgroups if p is a prime number. [5]