University of Swaziland

Supplementary Examination - July 2010

BSc IV, BASS IV, BEd IV

Title of Paper : Complex Analysis

Course Number

: M313

Time Allowed

: Three (3) hours

Instructions

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

[2]

QUESTION 1

- (a) Find the roots of the equation $z^3 + 8i = 0$. [8]
- (b) Consider the complex plane. Give the definitions of
 - (i) exterior point, [1]
 - (ii) closed set, [1]
 - (iii) bounded set, [1]
 - (iv) multiply connected set. [1]
- (c) (i) Sketch the following sets:

$$|z + 2i| = 2$$
, Im $z < 1$, Re $z = 2$.

- (ii) Which sets in (i) are domains? [1]
- (iii) Which sets in (i) are bounded? [1]
- (d) Construct the line Im $\frac{1}{z+i} = 1$. [4]

QUESTION 2

- (a) Find the region into which a transformation w = f(z) maps a region D if
 - (i) $f(z) = z^4$, D is the sector $r \le 1$, $0 \le \theta \le \pi/4$. [3]
 - (ii) $f(z) = z^2$, D is the square $0 \le \operatorname{Re} z \le 1$, $0 \le \operatorname{Im} z \le 1$. [3]
- (b) Find the limits. Give reasons for your solutions.
 - (i) $\lim_{z \to -2} \frac{iz+2}{z+2}$, [2]
 - (ii) $\lim_{z \to \infty} \frac{2z+i}{z+1}.$ [2]
- (c) Define the function f(z) continuous at a point z_0 . [2]
- (d) Using just the definition of the derivative, find f'(z) for the following:
 - (i) $f(z) = |z|^2$. Use $z\bar{z} = |z|^2$. [6]
 - (ii) $f(z) = \operatorname{Im} z.$ [2]

[8]

[3]

QUESTION 3

(a)	Using Cauchy-Riemann equations	
	(i) state a sufficient conditions theorem for existence of $f'(z_0)$,	[1]
	(ii) check if there are derivatives of $f(z) = z^2$ and $g(z) = z ^2$, so find $f'(z)$ and $g'(z)$.	[6]
(b)	Use Cauchy-Riemann equations to show that $f'(z)$ does not exist if $f(z) = z - \bar{z}$.	[3]
(c)	Use the sufficient conditions theorem to show that $f'(z)$ and is derivative $f''(z)$ exist everywhere, and find $f''(z)$ when $f(z) = \cos x \cosh y - i \sin x \sinh y$.	[4]
(d)	Derive Cauchy-Riemann equations in polar coordinates.	[6]
	QUESTION 4	
(a)	Define	
	(i) Analytic function,	[1]
	(ii) Entire function,	[1]
	(iii) Singular point,	[1]
	(iv) Harmonic function,	[1
	(v) Harmonic conjugate of u .	[1]
(b)	Consider $f(z) = \frac{1}{z}$.	
	(i) Is $f(z)$ analytic? Explain.	[2]
	(ii) Find singular points.	[2]
(c)	Given $u(x, y) = e^x [x \cos y - y \sin y]$.	

(i) Find f as an explicit function of z, where the real part of f(z) is u.

(ii) Find f'(z).

COURSE NAME AND CODE: M313 Complex Analysis

QUESTION 5

(a) Show that

(i)
$$\int_C \frac{dz}{z-a} = 2i\pi$$
 where C is a circle $|z-a| = R$. [4]

(ii)
$$\int_C e^{-z} dz = 1$$
, where C is a ray, $\arg z = \pi/4$. [5]

- (b) (i) State, and [1]
 - (ii) prove the Cauchy integral formula. [4]
- (c) Apply the Cauchy integral formula to evaluate

$$\int_C \frac{e^{2iz}}{z^2 + 2z} \ dz,$$

where C is the circle |z| = 1.

[6]

[2]

QUESTION 6

- (a) State the Laurent series theorem.
- (b) (i) Expand $f(z) = \frac{1}{(z-1)^2(z-3)}$ in a Laurent series valid for 0 < |z-1| < 2. [8]
 - (ii) What is the principal part of the series in (i)? [1]
- (c) (i) Prove that

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \quad |z| < \infty,$$
[3]

- (ii) show that $\cosh z = \cos(iz)$, [3]
- (iii) and hence derive a Taylor series for $\cosh z$. [3]

QUESTION 7

- (a) Give the definitions and examples of
 - (i) Isolated singular point, [2]
 - (ii) Residue, [2]
 - (iii) Principal part of f(z) at z_0 , [2]
 - (iv) Pole of order m. [2]
- (b) (i) Derive the formula

$$\int_C f(z) \ dz = 2\pi i b_1$$

in the usual notations. Explain the terms.

ms. [2]

(ii) Use the results from (i) to evaluate

$$\int_C \frac{e^{-z}}{(z-1)^2} \ dz,$$

where C is the circle |z| = 2, described in the positive sense.

[4]

(c) Using the residue theorem, evaluate

$$\int_0^\infty \frac{\cos x}{x^2 + b^2} \ dx, \quad b > 0.$$

[6]

END OF EXAMINATION PAPER