Final Examination — May 2010

BSc III, Bass III, BEd III

Title of Paper : Complex Analysis
Course Number : M313

Time Allowed : Three (3) hours,
Instructions

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.

4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS
BEEN GIVEN BY THE INVIGILATOR.
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QUESTION 1

(a) Solve the equation z™ = 1, where n has any one of the values n = 2,3, ..

geometrical interpretation for n = 2, 3, 47
(b) Consider the complex plane. Give the definitions of

(i) interior point,
(ii) open set,
(ili) connected set,

(iv) simply connected set.

(¢c) (i) Sketch the following sets:

3
aIg(z—}-z'):—Z:—r, 2 —2+1 <1, Imz>1.

(i1) Which sets in (i) are domains?
(i) Which sets in (i) are bounded?

i
(d) Construct the line Re — = 2.
Z

QUESTION 2

(a) Find the region into which a transformation w = f(z) maps a region D if
(i) f(z)=2% Disthesector 2 <1, 0 <8 <n/4
(i) f(z) =2z+ %, D is the entire circle |z = 1.

(b) Find the limits. Give reasons for your solutions.

. %
(i) tim 12 + .z,
3 2 — 1

2
(i) lim 2

200 z— 1

(c) Explain the formula lim f(z) = wq.

2— 2
(d) Using just the definition of the derivative, find f'(z) for the following:
(i) f(z) = |z]% Use 2z = |z|*.
(i) f(z) =z

.. What is the
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QUESTION 3

(a) (i) State,
(ii) and prove the necessary conditions theorem for the existence of f'(z). ‘ 11,5)

{b) Use Cauchy-Riemann equations to show that f'(z) does not exist if f(z) = exp(z) exp(—iy).

3]
(c) Use the sufficient conditions theorem to show that f'(z) and is derivative f"(z) exist ev-
erywhere, and find f"(z) when f(z) = exp(z) exp(—iy). 3]
(d)} Derive the formula
f(z) = exp(—1i0)(uy + iv,)
in the usual notations. 8]
QUESTION 4
(a) Define
(i} Analytic function, 1]
(ii) Entire function, [1]
(1} Singular point, (1]
(iv) Harmonic function, (1]
(v) Harmonic conjugate of u. 1]
(b) Consider f(z) = |z|%
(i) Is f(z) analytic? Explain. 2]
(it} Find singular points. 2]
(c) Find the analytic function w = f(z}, given that the real part u{z,y) = 2e®cosy and
flo)y=2 7]
(d) Show that if v is a harmonic conjugate of v in a domain D, then —u is a harmonic conjugate
of v in D, and cinversely. 4]
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QUESTION 5

into the simple fractions and thus show that

f dz )
—_— =,
c 22 + 22

where C is a positively oriented cirlce |z} = 1.

(a) Expand 2,

(b) State the Cauchy-Goursat theorem.

(c) Apply the Cauchy integral formula to show that
/ zdz o
c(9~22)(z+14) 5’

where C' is the positively oriented circle |2] = 2.

QUESTION 6

(a)} State the Taylor’s theorem for analytic functions.

(b) (i) Prove that
o 2n+1

z
inz=Y (=1}t :
sin z ;( ) nr 1) |2] < oo
(ii) Show that
sinh z = —isin(it),
{iii) and hence derive
) O 2ntl
smhz=;(m, |ZI < 0.

(¢) (i) Find the Laurent series representation for exp(1/z),

(ii) and hence prove that
f exp(1/z) dz = 2mi,
c

where C is any positively oriented simple closed contour around the origin.
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QUESTION 7

(a) Give the definitions and examples of

(i) Isolated singular point,
(ii) Residue,
(iii) Principal part of f(z) at 2y,

{iv) Pole of order m.

(b) Using the residue theorem, evaluate the following integrals:

-2
(i) f ;5(%_3_)_ dz, where C is the circle |z| = 2 described counterclockwise,
o2z —

o [T dx
(i) [w_—(z2+1)3.
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