UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2009/2010

B.Sc. / B.Ed. / B.A.S.S.III

TITLE OF PAPER

: VECTOR ANALYSIS

COURSE NUMBER

: M312

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- (a) (i) Find the distance from the plane x + 2y + 6z = 1 to the plane x + 2y + 6z = 10.
 - (ii) Find parametric equations for the line through (0, -7, 0) perpendicular to the plane x + 2y + 2z = 13. [5]
- (b) (i) The graph y = f(x) in the xy-plane automatically has the parametrization x = x, y = f(x), and the vector formula $\mathbf{r}(x) = x\hat{\mathbf{i}} + (f(x))\hat{\mathbf{j}}$. Use this formula to show that if f is a twice differentiable function of x, then

$$\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}}.$$

[7]

(ii) Use the formula for κ in (i) to find the curvature of $y = \ln(\cos x), -\pi/2 \le x \le \pi/2.$ [3]

QUESTION 2

- (a) Show that $\mathbf{n}(t) = -g'(t)\hat{\mathbf{i}} + f'(t)\hat{\mathbf{j}}$ and $-\mathbf{n}(t) = g'(t)\hat{\mathbf{i}} f'(t)\hat{\mathbf{j}}$ are both normals to the curve $\mathbf{r}(t) = f(t)\hat{\mathbf{i}} + g(t)\hat{\mathbf{j}}$ at the point (f(t), g(t)). Hence find a unit normal, $\hat{\mathbf{N}}$, for the curve $\mathbf{r}(t) = \sqrt{4 t^2} \hat{\mathbf{i}} + t \hat{\mathbf{j}}$, $-2 \le t \le 2$. [6]
- (b) Integrate $f(x, y, z) = 2x 6y^2 + 2z$ over the line segment C joining the points (2,2,2) and (3,3,3).
- (c) Show that ydx + xdy + 4dz is exact and evaluate the integral

$$\int_{(2,2,2)}^{(3,4,0)} y \mathrm{d}x + x \mathrm{d}y + 4 \mathrm{d}z.$$

[8]

QUESTION 3

- (a) Give a formula $\mathbf{F} = M(x,y)\hat{\mathbf{i}} + N(x,y)\hat{\mathbf{j}}$ for the vector field in the plane with the properties that $\mathbf{F} = \mathbf{0}$ at the origin and that at any other point (a,b) in the plane, \mathbf{F} is tangent to the circle $x^2 + y^2 = a^2 + b^2$ and points in the clockwise direction, with magnitude $|\mathbf{F}| = \sqrt{a^2 + b^2}$. [10]
- (b) Verify the divergence theorem for $\mathbf{A} = (2x z)\hat{\mathbf{i}} + x^2y\hat{\mathbf{j}} xz^2\hat{\mathbf{k}}$ taken over the region bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. [10]

QUESTION 4

- (a) By any method, find the outward flux of the field $\mathbf{F} = (6x^2 + 2xy)\hat{\mathbf{i}} + (2y + x^2z)\hat{\mathbf{j}} + (4x^2y^3)\hat{\mathbf{k}}$ across the boundary of the region cut from the first octant by the cylinder $x^2 + y^2 = 9$ and the plane z = 9. [10]
- (b) By any method, find the circulation of the field $\mathbf{F} = (x^2 + y^2)\hat{\mathbf{i}} + (x + y)\hat{\mathbf{j}}$ around the triangle with vertices (1,0), (0,1), (-3,0) traversed in the counterclockwise direction. [10]

QUESTION 5

- (a) If $\mathbf{F} = y\hat{\mathbf{i}} + (x 2xz)\hat{\mathbf{j}} xy\hat{\mathbf{k}}$, evaluate $\iint_S (\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} \, dS$, where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ above the xy-plane. [10]
- (b) Verify that the parametric equations

$$x = \rho^2 \cos \theta$$
, $y = \rho^2 \sin \theta$, $z = \rho$

could be used to represent the surface $x^2 + y^2 - z^4 = 0$. Hence compute the unit normal to this surface at any point. [10]

QUESTION 6

- (a) Part of a railway line (superimposed on a rectangular coordinate system) follows the line y = -x for $x \le 0$, then turns to reach the point (3,0) following a cubic curve. Find the equation of this curve if the track is continuous, smooth, and has continuous curvature. [10]
- (b) Find the scale factors h_1 , h_2 , and h_3 in cylindrical and in spherical coordinates. Hence find the volume element dV (in cylindrical and in spherical coordinates). [10]

QUESTION 7

(a) Evaluate

(i)
$$\int x^4 J_1(x) dx$$
 [2]

(ii)
$$\int x^3 J_3(x) dx$$
 [4]

(iii)
$$\int_0^\infty \frac{y^2}{1+y^4} \mathrm{d}y.$$
 [3]

(iv)
$$\int_0^{\pi} \sin^5 \theta d\theta$$
, [3] where $J_1(x)$ and $J_3(x)$ are Bessel functions of the first kind of order 1 and

order 3, respectively.

(b) Use recurrence relations to show that

$$2J_0''(x) + J_0(x) - J_2(x) = 0,$$

where $J_n(x)$ is the Bessel function of the first kind of order n. [8]

END OF EXAMINATION