UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2009/2010

BSc. / BEd. / B.A.S.S. III

TITLE OF PAPER

: NUMERICAL ANALYSIS I

COURSE NUMBER

: M 311

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1. Let $f(x) = x - e^x$

(a) Show that f(x) has exactly one root in [0, 1].

[5 marks]

(b) Compute an approximation to the root by taking 4 steps of the bisection method.

[6 marks]

(c) How many iterations would be required to locate this zero to a tolerance of 10⁻⁵?

[3 marks]

(d) Compute an approximation to the root by taking 3 steps of the Newton's method starting with $x_0 = 0.5$.

[6 marks]

QUESTION 2

- 2. (a) Suppose that f(-1) = 3, f(0) = 4 and f(2) = 5. Find the Lagrange interpolating polynomial which interpolates these values, and use it to estimate f'(0). [10 Marks]
 - (b) Given the data

(i) construct a divided difference table.

[5 marks]

(ii) write down the Newton form of the interpolating polynomial.

[5 marks]

QUESTION 3

- - (b) Given the function $f(h) = \sqrt{9-h} 3$
 - (i) find a suitable function g(h) that has been reformulated to be algebraically equivalent to f(h) with the aim of avoiding loss of significance error. [3 marks]
 - (ii) Compare the results of calculating f(0.0001) and g(0.0001) using six digits and chopping. [4 marks]
 - (c) For the scheme $x_{n+1} = x_n + c(x_n^2 7)$, find the range of values of c for which convergence to the positive fixed point is guaranteed. For what value of c is convergence quadratic? [7 marks]

QUESTION 4

4. (a) Establish a numerical integration formula of the form

$$\int_a^b f(x) \ dx \approx w_1 f(a) + w_2 f(b)$$

that is accurate for polynomials of as high a degree as possible.

[8 marks]

(b) Use the Gaussian elimination procedure to compute the LU factorization of the matrix

$$A = \left(\begin{array}{rrr} 2 & 2 & -1 \\ 4 & 5 & 2 \\ -2 & 1 & 2 \end{array}\right)$$

[12 marks]

QUESTION 5

5. (a) Evaluate the integral

$$\int_0^2 \ln(1+x) \ dx$$

by the Trapezoidal rule with accuracy $\varepsilon=0.05$

[10 Marks]

(b) Convert the binary number (0.111111...)2 to its decimal equivalent

[5 Marks]

(c) Convert the decimal number $\frac{43}{5}$ to its binary equivalent.

[5 Marks]

QUESTION 6

6. Suppose we know the following values of a function f:

$$f(0) = 1, f(1) = 2, f(2) = 8$$

(a) Evaluate the divided-differences f[0], f[0, 1], f[0, 1, 2].

[4 marks]

(b) Evaluate the forward-differences $\Delta f(x_0), \Delta^2 f(x_0)$.

[4 marks]

(c) Write down the appropriate Newton's interpolating polynomial.

[2 marks]

Use LU decomposition to solve the following linear system

$$x+2y+3z = 4$$

$$x - y + 6z = -1$$

$$2x + y = 0$$

[10 marks]

7. QUESTION 7

7. (a) Use the two-point Gaussian Quadrature rule,

$$\int_{-1}^{1} f(x) dx \approx f\left(\frac{-\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right),$$

to approximate the integral

$$\int_0^1 x^2 e^{-x} \ dx$$

and compare your result against the exact value of the integral.

[10 marks]

(b) For the data

\boldsymbol{x}	- 2	- 1	0	1	2	3
f(x)	15	5	1	3	11	25

(i) Construct the foward difference table.

[7 marks]

(ii) Use the resulting polynomial to find f(0.5).

[3 marks]