UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2009/10

BSc./B.Ed./B.A.S.S II

TITLE OF PAPER

: LINEAR ALGEBRA

COURSE NUMBER

: M220

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY \underline{FIVE} QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

a) Let V be all ordered pairs of real numbers. Define addition and scalar multiplication as follows $(x_1,y_1)+(x_2,y_2)=(x_1+x_2+1,y+y_2+1)$ and $\alpha(x_1,y_1)=(\alpha x_1+\alpha-1,\alpha y_1+\alpha-1)$. Show that V is a vector space

[10]

(b) Give that $A=\begin{pmatrix}1&1&1\\2&3&1\\1&-1&-2\end{pmatrix}$. Use the augmented matrix [A:I] to compute A^{-1} .

[5]

(c) Determine whether the following has a non-trivial solution:

$$2x + y - z + 2w = 0$$

$$x + y + z + w = 0$$

$$3x + 2y + 2z + 2w = 0$$

[5]

QUESTION 2

(a) Use Crammer's rule to solve(i) and use Gaussian elimination to solve (ii)

(i)

$$2x + 2y + z = 1$$

$$3x + y + z = 2$$

$$x + y + z = 0$$

(ii)

$$x_1 + x_2 + x_3 = 3$$

$$2x_1 + 3x_2 + x_3 = 5$$

$$x_1 + x_2 - 2x_3 = -5$$

[10]

(b) Find the inverses by inspection

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

[5]

(c) Given that $A=\left(\begin{array}{cc} 3 & 2 \\ 1 & 4 \end{array}\right)$. Verify Cayley-Hamilton theorem for the matrix A.

[5]

QUESTION 3

(a) Determine whether the sets of vectors in the vector space V are linearly dependent or independent

i
$$\{2x^2 + x, x^2 + 3, x\}$$
 $V = P_2(x)$

$$\mathbf{ii}\;\left\{\left(\begin{array}{cc}1&0\\0&0\end{array}\right),\left(\begin{array}{cc}0&1\\1&0\end{array}\right),\left(\begin{array}{cc}0&2\\0&1\end{array}\right),\left(\begin{array}{cc}0&0\\1&1\end{array}\right)\right\}\quad V=M_2(\mathbb{R})$$

[10]

(b) Let $s = \{\nu_1, \nu_2, \dots, \nu_n\}$ be a set of non-zero vectors in a vector space V. Prove that s is linearly dependent \Leftrightarrow one of the vectors is a linear combination of the preceding vectors in s.

[10]

QUESTION 4

(a) Find conditions on λ and μ for which the following system has

i a unique solution

ii no solution or

iii infinitely many solutions.

$$x+y-4z = 0$$

$$2x + 3y + z = 1$$

$$4x + 4y + \lambda z = \mu$$

[10]

- (b) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by T(x,y) = (x-2y,2x+y,x+y)
- i Find the standard matrix of T

ii Find the matrix of T with respect to B^1 and B where $B^1 = \{(1, -1), (0, 1)\}$ and $B = \{(1, 1, 0), (0, 1, 1), (1, -1, 1)\}$

[10]

QUESTION 5

(a) Prove that if a homogeneous system has more unknowns than the number of equations then it has a non-trivial solution.

[10]

(b) Find the characteristic polynomial eigenvalues and eigenvectors of the following matrix.

$$\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & -2 & 1 \\
2 & 2 & 3
\end{array}\right)$$

[10]

QUESTION 6

(a) Show that B is a basis for \mathbb{R}^3 , where

$$B = \{(0, 2, 1), (1, 0, 2), (1, -1, 0)\}$$

[5]

(b) Show that the vector
$$\begin{pmatrix} 12 \\ 12 \\ -3 \end{pmatrix}$$
 is a linear combination of the vectors $(2,0,1)^T$, $(4,2,0)^T$, $(1,3,-1)^T$

[5]

(c) Let
$$B_1 = \left\{ \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}$$
 and

$$B_2 = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \text{ be bases. Find the transition matrix from } B_1 \text{ to } B_2$$

[10]

QUESTION 7

(a) Given that

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 2 & 1 & 5 & -3 \\ 0 & -1 & 3 & 0 \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

Use the augemented matrix [A:I] to find A^{-1} .

(b)In (a) above find a finite sequence of elementary matrices E_1, E_2, \dots, E_k such that $E_k E_{k-1} \dots E_1 A = I$.

[13]

(c) Evaluate the following determinant using cofactor expansion along the second row

$$\begin{vmatrix}
3 & 2 & 1 \\
-2 & 1 & 2 \\
1 & -3 & 2
\end{vmatrix}$$

[4]

(d) Determine whether the system has a nontrivial solution

$$-x_1 + 2x_2 + 2x_3 + 2x_4 = 0$$
$$3x_1 + x_2 - x_3 + 2x_4 = 0$$
$$x_1 - 2x_2 + 3x_3 - x_4 = 0$$

[3]