UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2009/10

BSc. II

TITLE OF PAPER

: MATHEMATICS FOR SCIENTISTS

COURSE NUMBER

: M215

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- (a) For which values of t are tx 2y + 8 = 0 and 3tx + 6y + 4 = 0 the equations of
- (i) parallel lines
- (ii) perpendicular lines?

[2,2]

(b) Describe the solution set of

$$x^2 + y^2 - x - y + 1 = 0$$

[3]

- c) If θ is the angle between the vectors $\overline{a}=(1,1,1)$ and $\overline{b}=(2,3,2).$ Find
- (i) $\cos \theta$ using a scalar product,
- (ii) $\sin \theta$ using a vector product.

[5,5]

(d) What is a geometrical meaning of a triple product

$$\overline{a} \cdot (\overline{b} \times \overline{c})$$
?

Explain.

[3]

- (a) Consider a square matrix. Give the definitions of
- (i) Minor,
- (ii) Cofactor,
- (iii) Determinant.

[2,2,2]

(b) Find the inverse and check the result or state that inverse does not exist, giving the reason

(i)
$$\left[\begin{array}{cc} 0.6 & 0.8 \\ 0.8 & -0.6 \end{array} \right]$$
,

(ii)
$$\begin{bmatrix} 1 & -2 & 0 \\ 3 & 1 & 5 \\ -1 & 2 & 3 \end{bmatrix}.$$

[2,6]

(c) Solve the following system by Gauss elimination method

$$-x_1 + x_2 + 2x_3 = 2$$

$$3x_1 - x_2 + x_3 = 6$$

$$-x_1 + 3x_2 + 4x_3 = 4.$$

[6]

QUESTION 3

(a) Water is running out of a conical funnel at rate $2cm^3/sec$. Radius at top and height of funnel are 6cm and 10cm, respectively. How fast is the water level dropping when the water is 4cm deep?

[7]

- (b) (i) State, and
- (ii) prove Rolle's theorem

[1,4]

(c) Apply the L'Hospital rule to evaluate the following limits

(i)
$$\lim_{x\to 0^+} \frac{e^x-1}{x^2}$$
.

(ii)
$$\lim_{x\to 0} (\cot x - \frac{1}{x})$$
.

[3,5]

- (a) Use the Taylor series expansion to state and prove $\,$
- (i) necessary, and
- (ii) sufficient conditions theorem for f(x) to have a minimum at x^* .

[4,4]

- (b) (i) Use the quadratic approximation formula to compute ln(1+x) for small |x|, and estimate the error.
- (ii) Use the results from (i) to calculate ln 1.2.

[6,3]

(c) Find four terms of the Maclaurin's series for $\sin x$.

[3]

QUESTION 5

(a) Find the partial derivatives (at x = 2, y = 3) of

$$f(x,y) = 3x^3y + 4xy^2 - 2x + 4y - 8.$$

[5]

(b) Find the partial derivatives with respect to u and v of f(x,y) = exp(xy), where $x = u^2$ and y = uv.

[7]

- (c) Find and classify all stationary points of the following functions
- (i) $x^2 + 2y^2$,
- (ii) $x^2 2y^2$.

[4,4]

(a) Apply Lagrange's method to find the minimum and the maximum of $x_1 + x_2$, provided

$$x_1^2 + x_2^2 = 1.$$

[8]

(b) Find the area of the region enclosed between the curves $y=x^3$, y=2x, x=0 and x=1.

164

(c) Find the volume of a right cone of radius a and height h by using

(i)
$$V = \int_a^b A(x) dx$$
,

Where A(x) is an area of the cross-section x,

(ii) formula for the volume of the solid of revolution

10,01-[4,4]

QUESTION 7

(a) Find the area of surface generated by rotating $z=x^2$ from x=0 to $x=\sqrt{2}$ about z-axis

[6]

(b) Compute the volume of solid under surface z=4-x-y and over a region R, where $R=\{(x,y):y\leq 4-x,y\geq 0,x\geq 0\}\,.$

[7]

(c) Pass to polar coordinates to evaluate

$$\int\!\!\int\limits_{D} exp(x^2+y^2)dxdy,$$

$$D = \{(x,y) : 1 \le x^2 + y^2 \le 3, x \ge 0, y \ge 0\}.$$

[7]