UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2009/10

BSc. II

TITLE OF PAPER

MATHEMATICS FOR SCIENTISTS

COURSE NUMBER

: M215

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- (a) Find the equation of the straight line through (-1,2) which is
 - (i) parallel,
- (ii) perpendicular to the line 4x + 12y + 3 = 0

[4]

(b) Describe the solution set of

$$x^2 + y^2 + 2x + 4y + 4 = 0.$$

[3]

- (c) Find the unit vector perpendicular to both $\overline{a} = (2, -6, -3)$ and $\overline{b} = (4, 3, -1)$
 - (i) using a scalar product
- (ii) using a vector product

[5,5]

(d) Derive the vector equation of a straight line passing through two points.

[3]

QUESTION 2

- (a) Consider a transformation matrix $M(2 \times 2)$. What is the geometrical meaning of |M|? [5]
- (b) Find the inverse and check the result, or state that inverse does not exist, giving the reason.

(i)
$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
, (ii)
$$\begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 1 & 5 & 2 \end{bmatrix}$$
. [2, 6]

(c) Solve the following system by Gauss elimination method

$$x_1 - x_2 + x_3 = 0$$

$$-x_1 + x_2 - x_3 = 0$$

$$10x_2 + 25x_3 = 90$$

$$20x_1 + 10x_2 = 80$$

[7]

QUESTION 3

(a) A ladder 20m long leans against a vertical wall. The bottom of the ladder is pulled away from the wall at the rate of 8m/min. How fast is the top of the ladder moving down the wall when the bottom of the ladder is 12m from the wall?
[7]

(ii) prove the mean value theorem.	
	[1,4]
(c) Apply the L'Hospital rule to evaluate the following limits	
$(i) \lim_{x \to 0^+} \frac{\sin x}{\sqrt{x}},$	
(ii) $\lim_{x\to 0} \frac{\ln \sin^2 x}{\cot x}$.	
	[3,5]
QUESTION 4	
(a) Use the Taylor's series expansion to state and prove	
(i) necessary, and	
(ii) sufficient conditions theorem for $f(x)$ to have a minimum at x^* .	
	$[4,\!4]$
(b)	
(i) Use the quadratic approximation formula to compute $\exp(x)$ for small $ x $, a the error.	nd estimate
(ii) Use the results from (i) to calculate $\exp(-0.05)$.	
	[6,3]
(c) Find the third Taylor polynomial of the function	
$f(x) = 1 + x^2 + 2x^3$ at $x_0 = 1$.	[3]
QUESTION 5	
(4)	
(a)	
(i) Define the partial derivatives f_x and f_y of $f(x,y)$ at a point (x_0,y_0) .	

(b) (i) State, and

(ii) Let f(x,y) = |x|. Find f_x and f_y at x = y = 0. [3,3](b) Let $f(x,y) = 3x^2y$, x = u + v and y = uv. Find the partial derivatives f_u and f_v at u = 2and v = 3[7] (c) Let $f(x,y) = x^3 + y^3 - 3x - 12y + 5$. Find and classify all stationary points. [7] QUESTION 6 (a) Apply Lagrange's method to find $minf(X) = x_1^2 + x_2^2$ subject to the constraint $2x_1 + x_2 = 2.$ [8] (b) Find the area of the region enclosed between the curves $y = \frac{1}{2}x^2$ and $y = -x^2 + 6$ [4](c) Find the volume of a sphere of radius R by using (i) $V = \int_a^b A(x)dx$. Where A(x) is an area of the cross section x,

(ii) Formula for the volume of the solid of revolution

[4,4]

QUESTION 7

(a) Find the surface area of a cone using a formula of the area of a surface of revolution.

(b)	Compute	the	volume	under	the	surface
-----	---------	-----	--------	-------	-----	---------

$$z=f(x,y)=xy+2$$

over the region D where

$$D = \{x, y : 0 < x < 2, 0 < y < 4\}.$$

[7]

(c) Change to spherical system of coordinates and use a triple integral to find a volume of the sphere.

[7]