University of Swaziland

Final Examination, 2009/2010

BSc II, Bass II, BEd II

Title of Paper

: Calculus II

Course Number

: M212

Time Allowed

: Three (3) hours

Instructions

1. This paper consists of SEVEN questions.

- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

COURSE NAME AND CODE: M212 Calculus II

QUESTION 1

- (a) Consider the curve with polar equation $r = \tan \theta \sec \theta$. First find its Cartesian equation and then describe or identify the curve. [5]
- (b) Find the Cartesian coordinates of the point with polar coordinates $\left(2, -\frac{7\pi}{6}\right)$. [3]
- (c) Find the polar coordinates (r, θ) , with r > 0, $0 \le \theta < 2\pi$, of the point with Cartesian coordinates $(1, -\sqrt{3})$.
- (d) Find the area of the region under the curve $r = \sin \theta$ in the sector $\pi/3 \le \theta \le 2\pi/3$. [8]

QUESTION 2

(a) Suppose z is defined implicitly as a function of x and y by the equation

$$x^2 + y^2 + z^2 = 3xyz.$$

Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$. [10]

(b) Let $z = e^r \cos \theta$, r = st, $\theta = \sqrt{s^2 + t^2}$. Use the Chain Rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$. [10]

QUESTION 3

(a) A circle of radius a centred at (a,0) has Cartesian equation

$$(x-a)^2 + y^2 = a^2.$$

By first converting the equation to its polar equivalent and using the arc length formula, show that the circle has circumference $2\pi a$. [10]

(b) Use the definition of the limit to prove that

$$\lim_{(x,y)\to(0,0)}\frac{3x^2y}{x^2+y^2}=0.$$

[10]

QUESTION 4

(a) Evaluate

$$\int_0^1 \int_x^1 \sin(y^2) \ dy dx$$

by first changing the order of integration.

[10]

(b) Find the volume of the solid that lies under the plane 3x + 2y + z = 12 and above the rectangle $R = \{(x, y) | 0 \le x \le 1, -2 \le y \le 3\}$. [10]

TURN OVER

COURSE NAME AND CODE: M212 Calculus II

QUESTION 5

(a) Find the following limit, if it exists, or show that it does not exist:

$$\lim_{(x,y)\to(0,0)}\frac{y^4}{x^4+3y^4}.$$

[5]

(b) Define continuity of a function f(x,y) at a point (x_0,y_0) .

[5]

(c) Determine the set of points at which the function

$$f(x,y) = \frac{\sin(xy)}{e^x - y^2}$$

is continuous.

[5]

(d) Use polar coordinates to evaluate

$$\lim_{(x,y)\to(0,0)}\frac{x^3+y^3}{x^2+y^2}.$$

[5]

QUESTION 6

(a) Use polar coordinates to evaluate

$$\iint_D e^{-x^2-y^2} dA$$

where D is the region bounded by the semicircle $x = \sqrt{4 - y^2}$ and the y-axis.

[10]

(b) Find the area of the part of the surface of the paraboloid $z = x^2 + y^2$ that lies under the plane z = 9. [10]

QUESTION 7

(a) Evaluate
$$\iiint_E 2x \ dV \text{ where } E = \Big\{(x,y,z) | 0 \le y \le 2, 0 \le x \le \sqrt{4-y^2}, 0 \le z \le y\Big\}. \tag{10}$$

(b) Use spherical coordinates to evaluate $\iiint_E z \ dV$ where E lies between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$ in the first octant. [10]

END OF EXAMINATION PAPER_____