University of Swaziland

Supplementary Examination, 2009/10

BSc I, Bass I, BEd I, EEng I

Title of Paper : Introduction to Calculus

Course Number

: M115

Time Allowed

: Three (3) hours

Instructions

1. This paper consists of SEVEN questions.

- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

Question 1

(a) Use partial fractions to evaluate

$$\int \frac{x^4 - x^3 - x - 1}{x^3 - x^2} dx.$$
 [8]

(b) Show that

$$\int x\sqrt{1+x} dx = \frac{2}{15}(1+x)^{\frac{3}{2}}(3x-2) + C$$

in two ways:

- (i) Using integrations by parts
- (ii) Using the substitution $u = \sqrt{1+x}$.

[12]

[6]

Question 2

(a) Find the equation of the tangent to the curve

$$x^4 - y^4 - 4xy = 7$$

at the point (2,1).

(b) Evaluate the indefinite integral

$$\int \frac{\sin x}{1 + \cos^2 x} \mathrm{d}x. \tag{6}$$

(c) Find y' if

$$(i) y = x^{2/x} [4]$$

(ii)
$$y = \tanh\left(e^{-2x}\right)$$
 [4]

Question 3

- (a)
- (i) Evaluate the following limit

$$\lim_{x \to 0} \left(\frac{\sqrt{x+h} - \sqrt{x}}{h} \right)$$

(ii) Evaluate $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$ for

$$xy + y^2 = 1.$$

[10]

- (b) Perform the following integrations.
 - (i) $\int x\sqrt{1-x}\mathrm{d}x$
 - (ii) $\int \sqrt{\cos x} \sin 2x dx$

[10]

Question 4

- (a) Integrate the following
 - (i) $\int \frac{x^3}{x^2 2x + 1} \mathrm{d}x$
 - (ii) $\int \frac{\mathrm{d}x}{1 + \cos x} \mathrm{d}x$

[10]

(b) Use the limit definition to find the derivative of

$$y = \sqrt{1 + 2x}. [5]$$

(c) Evaluate the following limit

$$\lim_{x \to 0} \left(\frac{4 - x^2}{3 - \sqrt{x^2 + 5}} \right).$$
 [5]

Question 5

(a) Integrate

(i)
$$\int \sqrt{3 - 2x - x^2} dx$$
 [5]

(ii)
$$\int \sin^2 x \, \mathrm{d}x$$
 [5]

(b) Derive the reduction formula

$$\int \left(\ln x\right)^n dx = x \left(\ln x\right)^n - n \int \left(\ln x\right)^{n-1} dx. \quad [5]$$

(c) Use (b) above to evaluate

$$\int \left(\ln x\right)^2 \mathrm{d}x.$$
 [5]

Question 6

(a) Find $\frac{dy}{dx}$ for the following

$$y = u^2 - 1; \quad x = u^2 + 1.$$
 [5]

(b) Find $\frac{dy}{dx}$ implicitly for

$$x^2y^2 = x^2 + y^2. ag{5}$$

(c) Integrate

$$\int \left(\frac{2 - 5x^3 - 7x^5}{\sqrt{x}}\right) \mathrm{d}x.$$
 [5]

(d) Find y' for

$$y = x^{2x}. [5]$$

Question 7

- (a) Find the area bounded on the right by x + y = 2, on the left by $y = x^2$ and below by the x-axis. [7]
- (b) Derive the reduction formula

$$\int \cos^n x dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x dx.$$
 [4]

(c) Use (b) to evaluate

$$\int \cos^3 x \, \mathrm{d}x. \tag{4}$$

(d) Show that the function

$$y = a\sin kx + b\cos kx,$$

where a,b and k are constants, is a solution of the equation

$$y'' + k^2 y = 0. ag{5}$$