# University of Swaziland



Final Examination, 2009/10

# BSc I, Bass I, BEd I, EEng I

Title of Paper

: Introduction to Calculus

Course Number : M115

Time Allowed

: Three (3) hours

Instructions

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

# Question 1

- (a) Find the following limits
  - $\lim_{x \to 0} \frac{\sqrt{x+4} 2}{x} \\ \lim_{x \to 5} \frac{x 5}{x^2 25}$
  - (ii)

[6]

(b) Find the integral

$$\int \sin^3 x \cos^3 x dx.$$
 [6]

(c) Use integration by partial fractions to evaluate

$$\int \frac{2x^2 + x - 1}{x^3 - x^2} dx.$$
 [8]

## Question 2

- (a) Find the area of the region lying above the x-axis and under the parabola  $y = 4x - x^2$ . [6]
- (b) Use integration by parts to evaluate

$$\int x^3 \sin x \, \mathrm{d}x. \tag{7}$$

(c) Determine the value of k given that the tangent to the curve

$$y = x^2 + kx + 1$$

at the point (0,1) is parallel to the straight line

$$y = 2x + 4.$$

[7]

#### Question 3

(a) Use the limit definition to evaluate the derivative of

$$f(x) = \frac{1}{\sqrt{1+2x}}. ag{8}$$

(b) Evaluate the following integral

$$\int \frac{\cos x}{1 - \sin x} \mathrm{d}x. \tag{6}$$

(c) Use implicit differentiation to find  $\frac{dy}{dx}$ 

$$e^y - e^x = e^{y-x}. ag{6}$$

# Question 4

(a)

(i) Prove the following reduction formula

$$\int \cos^n x dx = \frac{\cos^{n-1} x \sin x}{n} + (n-1) \int \cos^{n-2} x dx.$$
[5]

(ii) Use (i) to evaluate

$$\int \cos^5 x dx.$$
 [5]

(b) Find 
$$\frac{dy}{d\theta}$$
 for 
$$\theta \cos y = \sin(\theta + y).$$
 [5]

(c) Find 
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
 for 
$$y = x^2 \operatorname{arcsec}\left(\frac{2}{x}\right).$$
 [5]

#### Question 5

(a)

(i) Find the expression for  $\frac{d^n y}{dx^n}$  (n is a positive integer) for

$$y = \frac{1}{(1+2x)^2}. [5]$$

(ii) Find the first and second derivative of

$$y = x \cos x. \tag{5}$$

(b) Find the derivative of y with respect to x for

$$y = x^{2x}. [5]$$

(c) Find the equation of the tangent to the curve

$$y = x^3 - 3x^2 + 7$$

at the point 
$$(2,3)$$
. [5]

#### Question 6

(a) Evaluate the definite integral

$$\int_0^1 x (x^2 + 3)^8 \mathrm{d}x.$$
 [6]

(b) Use Leibnitz's rule to find  $f^{(4)}(x)$  for

$$f(x) = x^6 \ln x. ag{8}$$

(c) Find  $\frac{\mathrm{d}y}{\mathrm{d}x}$  for the following

$$y = 3t - t^3$$
$$x = 2t - t^2.$$

[3]

(d) Evaluate

$$\int \left(x^4 + 3x^2 + \frac{1}{x} + \frac{1}{x^5}\right) dx.$$
 [3]

# Question 7

(a) Use trigonometric substitution to evaluate the following.

(i) 
$$\int \frac{\mathrm{d}x}{x\sqrt{x^2 - 1}}$$
(ii) 
$$\int \frac{x^2}{\left(9 - x^2\right)^{\frac{3}{2}}} \mathrm{d}x$$

[10]

- (b) Find the slope of the tangent to the curve  $y = x^4 2x^3 + 3$  at the point (-1, 6). [3]
- (c) Find the area of the region enclosed between  $y = 10 + 3x x^2$  and y = 2x + 4. [7]