UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2008/09

BSc.IV

TITLE OF PAPER

: METRIC SPACES

COURSE NUMBER

: M431

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE (5) QUESTIONS

3. ONLY NON-PROGRAMMABLE CALCULATORS

MAY BE USED.

SPECIAL REQUIREMENTS

: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY TEH INVIGILATOR.

- (a) (i) Define a metric space.
- (ii) Show that for any $x, y, z_1, \dots z_n$ from a metric space

$$d(x,y) \leq d(x,z_1) + d(z_1,z_2) + \cdots + d(z_{n-1},z_n) + d(z_n,y).$$

 $^{2,2]}$

- (b) Let X = C be a set of complex numbers, and d(x, y) = |x y|.
- (i) Show that for any $x, y \in X$

$$|x+y| \le |x| + |y|.$$

(ii) Thus prove that (X, d) is a metric space.

[3,3]

(c) Evaluate the distanc between $x=t^2$ and $x=t+1, \quad t\in [0,2]$ in max-metric.

[4]

- (d) (i) Define a disconnected set in a metric space (X, d).
- (ii) Apply the above definition to show that the set H is disconnected, where

$$H = \{(x,y) \mid x^2 + y^2 \le 2\} \cup \{(x,y) : \mid x^2 + y^2 \ge 2.5\}$$

[3,3]

(a) Consider the process $f: X \to X$, $x \in X$, y = f(x), where

$$y(t) = 1 = -\int_0^t [x(u)]^2 du, \quad t \in (-1, 1)$$

(i) Find at least 4 terms in the iterative process

$$x_{n+1} = f(x_n), \quad x_1 = 0.$$

(ii) Show that $x(t) = \frac{1}{1+t}$ is a fixed point, thus solve the integral equation

$$x(t) = 1 - \int_0^t x^2 du.$$

[4,3]

(b) Show that metric space axioms hold for L_1 -metric.

- [3]
- (c) Find distance between t^2 and t+1, $t \in [0,2]$ in L_1 -metric.

[4]

(d) Let a sequence in C[-1,1] be given by

$$x_n(t) = \begin{cases} 0 & \text{if } -1 \le t \le 0 \\ nt & \text{if } 0 < t < \frac{1}{n} \\ 1 & \text{if } \frac{1}{n} \le t \le 1 \end{cases}$$

Prove that this is a Cauchy sequence in L_1 -metric.

[6]

(a) Let $X = R^2$. Show that X together with	the lift distance is a metric space.	[4]
(b) Prove that uniform convergence is stronge	r than the pointwise convergence.	[4]
(c)(i) Put the negation of the difiniton of unif	orm convergence.	
(ii) Thus show that the sequence $f_n(x) = x^n$,	$x \in [0, 1]$ converges pointwise but	not
uniformly on $[0,1]$.	i	[3,3]
(d) (i) State and		
(ii) Prove M-test for uniform convergence.		[2,4]

(a) Show that an arbitrary non-empty set X together with the distance d defined by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 3 & \text{if } x \neq y \end{cases}$$

for all $x, y \in X$

forms a metric space.

[4]

- (b) Let (X, d) be a metric space. Give a definition of
- (i) Convergent sequence in (X, d).
- (ii) Open set $A \subset X$

[2,2]

- (c) Let A_1, A_2, \dots, A_k be closed sets in a metric space. Prove that $A_1 \cup A_2 \cup \dots \cup A_k$ is closed. [6]
- (d) Define in a metric space
- (i) an open ball,
- (ii) continuous map $f: M_1 \to M_2$ between metric spaces using open balls notion.

[3,3]

- (a) Show that $X = \mathbb{R}^2$ together with the London metric forms a metric space.
 - [6]

(b) Prove that any contraction is uniformly continuous.

[4]

(c) Show that the mapping

 $f:[0,1] \rightarrow [0,1]$ defined by

$$f(x) = \frac{1}{7}(x^3 + x^2 + 1)$$

is a contraction and deduce that there is a unique solution to the equation

$$x^3 + x^2 - 7x + 1 = 0$$
 in the interval [0, 1].

[6]

(d) Confirm by differentiation that the function $f:[1,\infty)\to [1,\infty)$ given by $f(x)=x+\frac{1}{x}$ is not a contraction, but that the function $g:[1,\infty)\to [1,\infty)$ given by

$$g(x) = \frac{9}{10}(x + \frac{1}{x})$$
 is.

[4]

(a) (i) Define the New York distance.

(ii) Show that $X = R^2$ together with the New York distant	ce form a metr	ic space [2,3]
(b) In a metric space (X, d) define		
(i) a Cauchy sequence,		
(ii) a complete set $A \subset X$,	: : :	
(iii) a compact set $A \subset X$.		[2,2,2]
(c) Give an example illustrating that there is a Cauchy	sequence in a	metric space
(X,d) which is not convergent in X .		[4]
(d) Let $\{x_n\}$ be a Cauchy sequence in a metric space	(X,d) and let	$\{x_{n_k}\}$ be a
convergent subsequence of $\{x_n\}$. Prove that $\{x_n\}$ is con-	vergent itself.	[5]