UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2008/09

BSc.IV

TITLE OF PAPER

METRIC SPACES

COURSE NUMBER

M431

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE (5) QUESTIONS

3. ONLY NON-PROGRAMMABLE CALCULATORS

MAY BE USED.

SPECIAL REQUIREMENTS

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY TEH INVIGILATOR.

(a) Consider the process $f: X \to X$, $x \in X$, y = f(x), where

$$f((x)(t)) = y(t) = 1 + \int_{0}^{t} u^{2}x(u)du.$$

(i) Find at least 4 terms in the iterative process

$$x_{n+1} = f(x_n), \quad x_1 = 1.$$

(ii) Find the fixed point, thus solve the integral equation

$$x(t) = 1 + \int_0^t u^2 x(u) du.$$

[4,3]

(b) (i) Show that metric space axioms hold for L_1 -metric.

(ii) Find distance between $\sin t$ and $\cos t$, $t \in [0, 2\pi]$ in L_1 -metric.

[3,4]

(c) Let a sequence in C[-1,1] be given by

$$x_n(t) = \begin{cases} 0 & \text{if } -1 \le t \le 0\\ nt & \text{if } 0 < t < \frac{t}{n}\\ 1 & \text{if } \frac{1}{n} \le t \le 1 \end{cases}$$

Show that this is a Cauchy sequence in L_1 -metric.

[6]

(a) (i) Define a metric space.

[2,2](ii) Show that $d(x,y) \ge 0$ for any x and y in a metric space. (b) Let X be the set of continuous functions $f:[a,b]\to R$. Show that X together with (i) Max-metric, (ii) Sup-metric, [3,3]is a metric space. (c) Evaluate the distance between $\sin t$ and $\cos t$, $t \in [0, 2\pi]$ using the max-metric. [4](d) (i) Define a disconnected set in a metric space (X, d). (ii) Apply the above definition to show that the set F is disconnected, where $F\left\{(x,y):\ x^2+y^2\leq 1\right\}U\left\{(x,y):\ x^2+y^2\geq 2\right\}.$

[3,3]

(a) Let $X = \mathbb{R}^2$. Show that X together with Euclidean distance forms a metric space.

[5]

- (b) Prove that uniform convergence is stronger than the pointwise convergence. [4]
- (c) (i) Let $f_n(x) = \frac{1}{nx}$, for x > 0 and $n \in \mathbb{N}$. Show that $\{f_n\}$ converges pointwise on $X = (0, \infty)$, but not uniformly.
- (ii) Let $f_n(x) = \frac{1}{nx}$, for $x \ge a$ and $n \in N$. Show that

$$f_n \to 0$$
 uniformly on $X = [a, \infty)$. [3,3]

(d) Apply M-test to verify the statements in (c). [5]

QUESTION 4

(a) Consider an arbitrary non-empty set X together with the discrete metric, $x, y \in X$ $d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 2 & \text{if } x \neq y \end{cases}$ Show that (X,d) is a metric space. [4]

- (b) Let (X, d) be a metric space. Give the definition of
- (i) a convergent sequence in (X, d),

(ii) a closed set
$$A \subset X$$
. [2,2]

- (c) Prove that any intersection of closed sets in a metric space is itself closed. [5]
- (d) Let $F: \mathbb{R}^2 \to \mathbb{R}$ be continuous and let A be closed in \mathbb{R} . Prove that $F^{-1}(A)$ is closed in \mathbb{R}^2 .
- (e) Consider the sequence (0,1), $(\frac{1}{2},1\frac{1}{2})$, $(\frac{2}{3},1\frac{2}{3})$, $(\frac{3}{4},1\frac{3}{4})$, \cdots to illustrate that the set

$$A = \{(x,y): x^2 + y^2 < 5\}$$
 is not closed. [3]

(a) Show that $X = R^2$ together with the New York metric forms a metric space. [6]

(c)Show that the mapping

 $F: [-1, 1] \to [-1, 1]$ defined by

$$f(x) = \frac{1}{8}(x^3 + 2x^2 + 4)$$

is a contraction and deduce that there is unique solution to the equation $x^3 + 2x^2 - 8x + 4 = 0$ in the interval [-1, 1].

(d) Show that the function $f: R \to R$ given by $f(x) = \cos x$ is not a contraction, but the function $f(x) = \frac{9}{10} \cos x$ is a construction. [4]

Hint: Apply a derivative test.

QUESTION 6

- (a) (i) Define the Chicago distance.
- (ii) Show that $X = R^2$ together with a Chicago distance form a metric space. [2,3]
- (b) In a metric space (X, d) define
- (i) a Cauchy sequence
- (ii) a complete set $A \subset X$,

(iii) a compact set
$$A \subset X$$
.

[2,2,2]

- (c) Prove that any convergent sequence in a metric space in a Cauchy sequence. [4]
- (d) Take $X = (0, \infty)$ and d(x, y) = |x y|.
- (i) Show that $x_n = \frac{1}{n}$, $n \in \mathbb{N}$ is a Cauchy sequence in (X, d) but not convergent in X.
- (ii) Show that (X, d) is not a complete metric space. [3,2]

- (a) Show that
- (i) (R^n, dp) , and
- (ii) Lp

metric spaces formally satisfy the metric space axioms.

[5,5]

Hint: You may use the Minkowski's inequalities for the complex numbers and for the continuous functions.

- (b) Given an open ball $B_{\varepsilon}(x)$ in a metric space and a point y in $B_{\varepsilon}(x)$. Prove that there exists $\delta > 0$ such that $B_{\delta}(y) \subset B_{\varepsilon}(x)$. [5]
- (c) Prove that if A is a compact set in a metric space then A is complete. [5]

END OF EXAMINATION