UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2008/9

BSc. /BEd. /B.A.S.S IV

TITLE OF PAPER

: ABSTRACT ALGEBRA II

COURSE NUMBER

M 423

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS.

3. Non-programmable calculators may be used.

SPECIAL REQUIREMENTS

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- 1. (a) Give an example of a ring satisfying the following given conditions. (Do not prove anything)
 - (i) A commutative ring with zero divisors.
 - (ii) A division ring that is not a field.
 - (iii) A ring that is not a division ring.

[6 marks]

- (b) A ring R is a boolean ring if $a^2 = a, \forall a \in \mathbb{R}$. Show that every boolean ring is commutative. [6 marks]
- (c) Prove that if D is an integral domain, then D[x] is also an integral domain. [8 marks]

QUESTION 2

- 2. (a) Let R be a commutative ring. Show that $N_a = \{x \in R : ax = 0\}$ is an ideal of R. (Assume the group properties) [4 marks]
 - (b) Decide the irreducibility or otherwise of
 - (i) $x^3 7x^2 + 3x + 3 \in \mathbb{Q}[x]$.
 - (ii) $8x^3 + 6x^2 9x + 24 \in \mathbb{Q}[x]$.

[8 marks]

(c) Show that for a field F, the set of matrices of the form

$$\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \text{ for } a, b \in F$$

is a right ideal but not a left ideal of $M_2(F)$.

[8 marks]

QUESTION 3

- 3. (a) Describe all units in each of the following rings.
 - (i) \mathbb{Z}_7 .
 - (ii) $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$.

[4 marks]

(b) Write $x^3 + 3x^2 + 3x + 4 \in \mathbb{Z}_5[x]$ as a product of irreducible polynomials. [6 marks]

(c) State the Eisentein irreducibility criterion and use it to prove that if p is prime, then the cyclotomic polynomial

$$f(x) = \frac{x^p - 1}{x - 1}$$

is irreducible.

[10 marks]

QUESTION 4

- 4. (a) Use Fermat's theorem to compute the remainder when 8¹⁰³ is divided by 13. [5 marks]
 - (b) Prove that every finite integral domain is a field. [5 marks]
 - (c) Show that the mapping $\phi: \mathbb{C} \to \mathbb{R}$ given by

$$(a+ib)\phi = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \ a,b \in \mathbb{R}$$

is a ring homorphism. Find its kernel.

[6 marks]

(d) State Kronecker's theorem (Do not prove).

[4 marks]

QUESTION 5

- (a) Show that 1 + x + x² ∈ Z₂[x] is an irreducible polynomial over Z₂. List all the four elements of the field Z₂[x]/ < 1 + x + x² > in the form a + bα with a, b ∈ Z₂, where α is a root of 1 + x + x² in this extension field of Z₂[x]. Construct Cayle tables for addition and multiplication, showing all computations.
 [10 marks]
 - (b) For each of the given algebraic numbers $\alpha \in \mathbb{C}$ find $\operatorname{irr}(\alpha, \mathbb{Q})$ and $\operatorname{deg}(\mathbb{Q})$.
 - (i) $\sqrt{3-\sqrt{6}}$.

[3 marks]

(ii) $\sqrt{\frac{1}{3} + \sqrt{7}}$.

[4 marks]

(iii) $\sqrt{2} + i$.

[3 marks]

QUESTION 6

6. (a) Given that every element β of $E=F(\alpha)$ can be uniquely expressed in the form

$$\beta = b_0 + b_1 \alpha + b_2 \alpha^2 + \dots + b_{n-1} \alpha^{n-1}$$

where each of $b_i \in \mathbb{F}$, α algebraic over the field F and $\deg(\alpha, F) = n \ge 1$. Show that if F is finite with q elements, then $E = F(\alpha)$ has q^n elements. [6 marks]

(b) Prove that every finite integral domain is a field.

[6 marks]

(c) Find the greatest common divisor d(x) of the polynomials $f(x) = x^4 + 4x^3 + 7x^2 + 6x + 2$ and $g(x) = x^3 + 4x^2 + 7x + 4$ over \mathbb{Q} and express d(x) as a linear combination of f(x) and g(x). [8 marks]

QUESTION 7

- 7. (a) Prove that if R is a ring with unity and N is an ideal of R containing a unit, then N = R. [6 marks]
 - (b) Find all ideals and maximal ideals \mathbb{Z}_{18} .

[4 marks]

- (c) In a ring \mathbb{Z}_n show that
 - (i) divisors of zero are those elements that are **NOT** relativey prime to n. [5 marks]
 - (ii) elements that are relatively prime to n cannot be zero divisors. [5 marks]