# UNIVERSITY OF SWAZILAND

# SUPPLEMENTARY EXAMINATION 2008/9

BSc. /BEd. /B.A.S.S III

TITLE OF PAPER

: REAL ANALYSIS

COURSE NUMBER

: M 331

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

## QUESTION 1

1. (a) Explain what is meant by 'the sequence of real numbers  $(x_n)$  converges to a limit  $l \in \mathbb{R}$ '.

Use this definition to show that

- (i) If a sequence  $(x_n)$  converges to  $l \in \mathbb{R}$  and a sequence  $(y_n)$  converges to  $m \in \mathbb{R}$  then the sequence  $(x_n + y_n)$  converges to l + m.
- (ii) the sequence  $(x_n) = \left(\frac{\sin(\pi^2 n)}{n}\right)$  converges to 0.

[11 marks]

- (b) Decide whether the following statements are true or false. Justify your answers.
  - (i) There is a convergent sequence which is strictly decreasing.
  - (ii) There is a sequence which is neither bounded below nor above.
  - (iii) The sequence  $(x_n) = (\sqrt{n+1} \sqrt{n-1})$  is convergent.

[9 marks]

### **QUESTION 2**

- 2. (a) Let S be a set of real numbers and  $G, \gamma, \delta \in \mathbb{R}$ . Explain what is meant by
  - (i) S is bounded below.
  - (ii) G is an lower bound for S.
  - (iii)  $\gamma$  is the infimum for S.
  - (iv)  $\delta$  is the minimum of S.

[8 marks]

- (b) Find if they exist, the infimum and minimum for the following sets:
  - (i)  $\left\{\frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N}\right\}$
  - (ii)  $\{x \in \mathbb{R} : 3x^2 + 2x 8 < 0\}$
  - (iii)  $\{x \in \mathbb{R} : |x 7| < 2\}$

[6 marks]

- (c) Consider the statement; 'If a set of real numbers has an infimum then it has a minimum'. Prove if true else give a counterexample. [2 marks]
- (d) Let  $S \subseteq \mathbb{R}$  be non-empty. Show that if  $u = \sup S$ , then  $\forall n \in \mathbb{N}, u \frac{1}{n}$  is not an upper bound of S but  $u + \frac{1}{n}$  is an upper bound of S. [4 marks]

### QUESTION 3

3. (a) Given that,

$$f(x) := \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

determine whether the function f is continuous or not at x = 0. Justify your answer. [2 marks]

- (b) Use the Intermediate Value Theorem to prove the following:
  - (i) If  $f:[a,b] \to [a,b]$  is continuous then it has a fixed point in [a,b].
  - (ii) The equation  $\cos x = x$  has a solution in the interval  $[0, \frac{\pi}{2}]$ . [3 marks]
- (c) Determine whether each of the following statements is true or false giving a proof or a counterexample as appropriate.
  - (i) All continuous functions  $f:(0,1]\to\mathbb{R}$  attain a maximum value. [3 marks]
  - (ii) All continuous functions  $f:(0,1]\to\mathbb{R}$  are bounded. [3 marks]
  - (iii) There is a function  $f:[0,1] \to \mathbb{R}$  that is discontinuous at every point of [0,1] but such that |f| is continuous on [0,1]. [3 marks]

# QUESTION 4

- 4. (a) Let  $f:(a,b)\to \mathbb{R}$ .
  - (i) Explain what is meant by saying that f is differentiable at  $c \in (a, b)$ . [2 marks]
  - (ii) Use this definition to show that:

$$f(x) := |x-1|$$
 is not differentiable at  $x = 1$ ,  $f(x) := x^2 - 1$  is differentiable at every point  $x = c$  with  $f'(c) = 2c$ . [8 marks]

(b) Show that the function  $f: \mathbb{R} \to \mathbb{R}$  defined by

$$f(x) = \begin{cases} -e^x, & x > 0 \\ -1 - x, & x \le 0 \end{cases}$$

is continuous and differentiable everywhere and find its derivative f'(x).

[10 marks]

### **QUESTION 5**

- 5. (a) Let  $f:[a,b]\to\mathbb{R}$ . Use upper and lower sums to define the Riemann integral  $\int_a^b f(x)dx$ . [10 marks]
  - (b) From the definition of the Riemann integral show that

$$\int_0^1 x \, dx = \frac{1}{2}$$

Assume without proof that

$$1+2+\cdots+n=\frac{n(n+1)}{2}, \forall n\in\mathbb{N}.$$

[10 marks]

#### QUESTION 6

- 6. (a) Given the series  $\sum_{n=1}^{\infty} a_n$ , define the following.
  - (i) The *n*-th partial sum.

[2 marks]

(ii) The convergence and the sum,

[2 marks]

(b) State and prove the squeeze theorem for sequences.

[8 marks]

(c) Consider the series  $\sum_{n=2}^{\infty} \log \left(1 - \frac{1}{n^2}\right)$ .

Show that the *n*th partial sum  $s_n := a_2 + a_3 + \cdots + a_n$  is given explicity by  $s_n = -\log 2 - \log n + \log(1+n)$ . [8 marks]

## QUESTION 7

7. (a) State the Mean Value Theorem.

[2 marks]

(b) Use the Mean Value Theorem to prove the following statement; Let  $f: [a,b] \to \mathbb{R}$  be a function which is both continuous and differentiable on (a,b). If  $f'(x) < 0 \ \forall x \in (a,b)$ , then f is strictly decreasing on (a,b).

[6 marks]

(c) Use the Mean Value Theorem to show that;

(i) 
$$\frac{1}{3} < \ln \frac{3}{2} < \frac{1}{2}$$
.

[4 marks]

(ii) 
$$\frac{1}{9} < \sqrt{66} - 8 < \frac{1}{8}$$
.

[4 marks]

(iii) 
$$\sin x < x$$
 for  $0 < x < \pi$ .

[4 marks]