UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2008/9

BSc. /BEd. /B.A.S.S III

TITLE OF PAPER

ABSTRACT ALGEBRA I

COURSE NUMBER

M 323

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS.

3. Non-programmable calculators may be used.

SPECIAL REQUIREMENTS

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1.	(a)	Give a	single	numerical	example	to	disprove	the	following:

"If $ax \equiv bx \pmod{n}$ then $a \equiv b \pmod{n}$, $a, b, n \in \mathbb{Z}$."

[8 marks]

- (b) Find all subgroups of \mathbb{Z}_{18} and the draw the lattice diagram. [8 marks]
- (c) Let $\phi: G \to H$ be an isomorphism of groups and e be the identity of the group G, then prove that
 - (i) $(a^n)\phi = [(a)\phi]^n$.

[4 marks]

(ii) $(e)\phi$ is the identity of the group H.

[4 marks]

QUESTION 2

2. (a) (i) Define a normal subgroup N of a group G.

[4 marks]

(ii) Show that the subgroup

$$N = \{(1), (123), (132)\}$$

is a normal subgroup of the group $G = S_3$.

[6 marks]

(b) Prove that every subgroup of prime order is cyclic.

[5 marks]

(c) Express d = (2190, 465) as an integral linear combination of 2190 and 465. [5 marks]

QUESTION 3

3. (a) Consider the following permutations in S_6 .

$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}, \ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$$

Compute

(i) $\rho\sigma$ (ii) σ^2 (iii) σ^{-1} (iv) σ^{-2} (v) $\rho\sigma^2$

[10 marks]

(b) Write the permuations ρ and σ in (3a) as a product of disjoint cycles in S_6 . [4 marks]

(c) Find the (a, b) and [a, b] using the prime factorization

(i) a = 216, b = 360.

[3 marks]

(ii) a = 144, b = 625.

[3 marks]

QUESTION 4

4.	(a)	Solve the following						
		$3x \equiv 5 \pmod{11}$						
			[5 marks]					
	(b)	Prove that if $(a, b)^{-1} = a^{-1}b^{-1}, \forall a, b \in G$, where G is a group, abelian.	then G is $[6 \text{ marks}]$					
	(c)	P) Determine whether the set $G = \mathbb{Q} - \{0\}$ with respect to the oper						
		$a\star b=rac{ab}{10}$						
		is a group.	[9 marks]					
		QUESTION 5						
5.	(a)	State Cayle's theorem (Do not prove anything).	[4 marks]					
	(b)	Consider (\mathbb{R}^+,\cdot) and $(\mathbb{R},+)$. Show that (\mathbb{R}^+,\cdot) is isomorphic to						
		$(\mathbb{R},+).$	[6 marks]					
	(c)	Find the number of generators in each of the following cyclic g and \mathbb{Z}_{42} .	groups \mathbb{Z}_{30} [5 marks]					
	(d)	Determine the right casets of $H = \{0,4\}$ in \mathbb{Z}_8 .	[5 marks]					
		QUESTION 6						
6.	(a)	For the binary operation \star defined on a set G , say whether or range a group structure on the set	ot * gives					
		(i) Define \star on \mathbb{R} by $a \star b = a + b - ab$.	[6 marks]					
		(ii) *-matrix multiplication and						
		$G = \left\{ egin{pmatrix} a & b \ 0 & 1 \end{pmatrix} : a, b \in \mathbb{R}, a eq 0 ight\}$	[8 marks]					
	(b)	Show that $3\mathbb{Z}$ and $5\mathbb{Z}$ are isomorphic.	[6 marks]					
		QUESTION 7						
7.	(a)	Use Lagrange's theorem to show that \mathbb{Z}_p has no proper						
	-	subgroups.	[5 marks]					
	(b)	Show that if $(a, m) = 1$ and $(b, m) = 1$, then						
		$(ab, m) = 1, a, b, m \in \mathbb{Z}.$	[6 marks]					

(c) (i) Find the conjugate elements of (12) in S_3 .

(ii) Find the conjugate groups of < (12) > in S_3 .

[4 marks]

[5 marks]