UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2008/09

BSc.III

TITLE OF PAPER

VECTOR ANALYSIS

COURSE NUMBER

M312

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE (5) QUESTIONS

3. ONLY NON-PROGRAMMABLE CALCULATORS

MAY BE USED.

SPECIAL REQUIREMENTS

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- (a) Consider a polar coordinate system (r, θ) . Derive formulas for the
- (i) Velocity,
- (ii) Acceleration.
- (b) Given $r = e^{3t}$, $\theta = 4t$ in the polar coordinate system. Find the
- (i) trajectory,
- (ii) radius of curvature of the trajectory.
- (c) (i) Define a sectorial velocity and
- (ii) find it in polar coordinate system.
- (d) Prove that a plane polar coordinate system is orthogonal.

[2,5,1,4,1,3,4]

QUESTION 2

- (a) Consider curvilinear coordinates q_1, q_2, q_3 in general case.
- (i) Define Lame parameters H_i .
- (ii) Show that

$$H_i^2 = \left(\frac{\partial x}{\partial q_i}\right)^2 + \left(\frac{\partial y}{\partial q_i}\right)^2 + \left(\frac{\partial z}{\partial q_i}\right)^2.$$

- (b) Let \overline{e}_i and \overline{e}_j be unit vectors corresponding to the coordinates q_i and q_j respectively.
- (i) Find the angle between \overline{e}_i and the coordinate axes OX, OY, OZ.
- (ii) Find angle between \overline{e}_i and \overline{e}_j , and hence
- (iii) Derive a condition of orthogonality of \overline{e}_i and \overline{e}_j .
- (c) Consider a system of spherical coordinates.
- (i) Find Lame parameters.
- (ii) Show that the system is orthogonal.

[2,2,4,3,2,3,4]

- (a) Consider a system of curvilinear orthogonal coordinates. Derive formulas for the
- (i) Velocity,
- (ii) Acceleration,
- (b) Prove that grad f is perpendicular to the surface f = const.
- (c) Consider a function $f(x, y, z) = x^2yz + 4xz^2$ and a point $\underline{P}(1, -2, -1)$.
- (i) Find the directional derivative of f at \underline{P} in the direction of the vector $\overline{A}(2,-1,-1)$.
- (ii) Compute the greatest rate of change of f at \underline{P} .
- (iii) Find the direction of the maximum rate of increase of f at \underline{P} .
- (d) Find the unit normal to the surface $(x-1)^2 + y^2 + (z+2)^2 = 9$ at P(3,1,-4).

[2,5,3,3,2,2,3]

QUESTION 4

- (a) Prove the following formulae;
- (i) $\nabla \cdot (f\overline{A}) = f\nabla \cdot \overline{A} + \nabla f \cdot \overline{A}$,
- (ii) $\nabla \times (\nabla f) = 0$,
- $(\mathrm{iii})\nabla\cdot(\nabla\times\overline{A})=0,$
- (iv) $(\overline{A} \cdot \nabla)\overline{r} = \overline{A}$.
- (b) Give the definition of a
- (i) regular arc,
- (ii) regular curve,
- (iii) Line integral of \overline{u} over curve c.
- (c) The acceleration of a particle at any time $t \ge 0$ is given by

$$\overline{a} = 12\cos 2t\overline{i} - 8\sin 2t\overline{j} + 16t\overline{k}.$$

The position vector and velocity are zero at t = 0. Find at any time the

- (i) Velocity, and the
- (ii) position vector.

[3,3,4,3,1,1,2,2,1]

(a) Evaluate the line integral for

 $\overline{U}=x^2\overline{i}+y\overline{j}$ along the parabola $y=x^2$ from the origin to the point (1,1):

- (i) First by considering the parameter equation of the parabola x = t and $y = t^2$.
- (ii) Next by considering the parabola in rectangular form.
- (b) Is \overline{U} in (a) conservative? Explain.
- (c) (i) State, and
- (ii) prove the necessary and sufficient condition theorem that a line integral in a simply connected region is independent of the path from point A to point B.

[4,4,3,2,7]

QUESTION 6

- (a) Show that a
- (i) necessary, and
- (ii) sufficient condition that $\overline{U} = \nabla \phi$ is $rot \overline{U} = 0$.
- (b) Determine the constant a so that the vector $\overline{A} = (x+3y)\overline{i} + (y-2z)\overline{j} + (x+az)\overline{k}$ is solenoidal.
- (c) Consider a vector field

$$\overline{V} = (x+2y+az)\overline{i} + (bx-3y-z)\overline{j} + (4x+cy+2z)\overline{k}.$$

- (i) Find constants a, b, c, so that the field is irrotational.
- (ii) Find a scalar potential of \overline{V} .

[3,4,3,3,7]

(a) Evaluate $\int_c (y - \sin x) dx + \cos x dy$,

where c is the triangle with the vertices at $O, A\left(\frac{\pi}{2}, 0\right), B\left(\frac{\pi}{2}, 1\right)$

- (i) Directly,
- (ii) by using Green's theorem in the plane.
- (b) State
- (i) Divergence theorem,
- (ii) Stoke's theorem.
- (c) Prove that a necessary and sufficient condition that

$$\int_{c} \overline{A} \cdot d\overline{r} = 0$$

for every closed curve c is that

$$\nabla \times \overline{A} = 0$$

identically.

[4,4,3,3,6]