UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2008/9

B.Sc. / B.Ed. / B.A.S.S. II

TITLE OF PAPER

: FOUNDATIONS OF MATHEMATICS

COURSE NUMBER

M231

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- State the difference between deductive reasoning and inductive reasoning. Which
 of the two is a valid form of argument? Explain.
- 2. Prove that if n is an integer and n^2 is divisible by 2, then so is n. [6]
- 3. Using the result in part 2, or otherwise, prove that if r is a real number such that $r^2 = 2$, then r is irrational. [10]

QUESTION 2

- 1. Determine the following sets:
 - (a) $\{n \in \mathbb{N} : \exists m \in \mathbb{N} \text{ with } m \le n\};$ [3]
 - (b) $\{n \in \mathbb{N} : \forall m \in \mathbb{N} \text{ we have } m \leq n\}.$ [2]
- Let a be an algebraic number and r a rational number. Show that ra is an algebraic number.
- 3. Suppose you want to show that $A \Rightarrow B$ is false. How should you do this? What should you try to show about the truth of A and B? [2]
- 4. Apply your answer of part (a) to show that the statement "If x is a real number that satisfies $-3x^2 + 2x + 8 = 0$, then x > 0" is false. [3]
- 5. Write the negation of the statement: "The real-valued function f of one variable is continuous at the point x if and only if for every real number $\varepsilon > 0$, there is a real number $\delta > 0$ such that, for all real numbers y with $|x y| < \delta$, $|f(x) f(y)| < \varepsilon$."

QUESTION 3

- 1. Show that $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$ is a tautology. [8]
- 2. Use truth table analysis to show that:

(a)
$$\neg (P \land Q) \equiv \neg P \lor \neg Q;$$
 [6]

(b)
$$\neg (P \Rightarrow Q) \equiv P \land \neg Q$$
. [6]

QUESTION 4

- 1. Prove that in any set of n + 1 pairwise distinct integers, there must be two whose difference is divisible by n. [7]
- 2. Prove, by the contrapositive method, that if no angle of a quadrilateral RSTU is obtuse, then the quadrilateral RSTU is a rectangle. [6]
- 3. (a) Show that if r is a nonzero rational number, then $r\sqrt{7}$ is an irrational number. [4]
 - (b) Using the result in part (a), or otherwise, show that $\sqrt{28}$ is irrational. [3]

QUESTION 5

- 1. Prove that $A \subseteq B \Leftrightarrow A \cap B = A$. [5]
- 2. Using the fact that an implication is equivalent to its contrapositive, prove that, for subsets of a universal set \mathcal{U} , $A \subseteq B \Leftrightarrow B^c \subseteq A^c$. [5]
- 3. Let p_1 and p_2 be distinct prime numbers. Prove that the real numbers $\sqrt{p_1} + \sqrt{p_2}$ and $\sqrt{p_1} \sqrt{p_2}$ are irrational. [10]

QUESTION 6

1.	Using truth tables, analyze the following argument and state whether it is valid or invalid.	l
	"All Germans are Europeans.	
	My neighbor is a European.	
	Therefore my neighbor is a German."	
	[6]	
2.	(a) Define an equivalence relation. [2]	
	(b) Let \mathbb{Z} be the set of all integers and let	
	$\mathscr{R} = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x \equiv y \pmod{3}\}$	
	be a relation on \mathbb{Z} . Show that \mathscr{R} is an equivalence relation. What are the	;
	equivalence classes of \mathcal{R} ? [12]	
	QUESTION 7	
1.	(a) Define a square-free natural number. [2]	
	(b) Let b and m be two natural numbers such that b is square-free and m^2 is	5
	divisible by b . Prove that m is also divisible by b . [10]	
2.	Let S and T be finite sets, and let $f: S \longrightarrow T$ be a function. Prove that:	
	(a) If f is onto, then $ S \ge T $; [3]	
	(b) If f is one-to-one, then $S \leq T $; [3]	
	(c) If f is a bijection, then $ S = T $. [2]	

END OF EXAMINATION