UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2008/9

B.Sc. / B.Ed. / B.A.S.S. II

TITLE OF PAPER

: FOUNDATIONS OF MATHEMATICS

COURSE NUMBER

M231

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

1.1	Prove that if $A \Rightarrow B$, $B \Rightarrow C$, and $C \Rightarrow A$, then A is equivalent to B and A equivalent to C .	4 is [10]
1.2	Determine the following sets:	t
	(a) $\{m \in \mathbb{N} : \exists n \in \mathbb{N} \text{ with } m \leq n\};$	[3]
	(b) $\{m \in \mathbb{N} : \forall n \in \mathbb{N} \text{ we have } m \leq n\}.$	[2]
1.3	Let a be an algebraic number and let r be a rational number. Show that a is an algebraic number.	- <i>r</i> [5]
	QUESTION 2	
2.1	Write down symbolically, the negation of the statements:	
	(a) $\exists x, (\neg P(x) \lor Q(x));$	[4]
	(b) $\forall x \in \mathbb{R} \forall y \in \mathbb{R} \exists z \in \mathbb{R}, x^2 + y^2 < z.$	[6]
2.2	Let $A = \{-3, -2, -1, 0, 1, 2, 3\}$, where $A \subseteq \mathbb{R}$. Determine the truth set of	
	$(\forall y \in A), x+y < 5.$	
		[5]
2.3	Determine the truth value in \mathbb{R} of:	
	(a) $\exists x \in \mathbb{R}$ such that $ x = -x$;	[2]
	(b) $\exists x \in \mathbb{R} : x + 4 = x$.	[3]

3.1	State the difference between deductive reasoning and inductive reasoning.	Which
	of the two is a valid form of argument? Explain.	[4]
3.2	Prove that if n is an integer and n^2 is divisible by 2, then so is n .	[6]
3.3	Define the following:	
	(i) Fallacy of affirming the conclusion;	[2]
	(ii) Fallacy of denying the antecedent.	[2]
3.4	Using truth tables, analyze the following argument and state whether it is or invalid	s valid
	"All Germans are Europeans.	
	My neighbor is not a German.	
	Therefore my neighbor is not a European."	[6]

- 4.1 Describe a modified induction procedure that could be used to prove statements of the form:
 - (a) For all integers $n \leq k$, P(n) is true, where P(n) is a statement containing the integer n.
 - (b) For all integers n, P(n), where P(n) is as in (a). [4]
 - (c) For every positive odd integer, something happens. [3]
- 4.2 For all non-negative integers n define the number u_n inductively as

$$u_0 = 0,$$

 $u_{k+1} = 3u_k + 3^k \quad \text{for } k \ge 0.$

Prove that $u_n = n3^{n-1}$ for all non-negative integers n. [4]

4.3 If $f(n) = 3^{2n} + 7$, where n is a natural number, show that f(n+1) - f(n) is divisible by 8. Hence prove by induction that $3^{2n} + 7$ is divisible by 8. [6]

5.1	(a) What is a partition of a set S ?	[2]
	(b) Let S be a set and let $\mathscr R$ be an equivalence relation on S . Prove that	the
	equivalence classes of \mathcal{R} form a partition of S .	[10]
5.2	Define a totally ordered set.	[2]
5.3	State whether each of the following subsets U of $\mathbb N$ is totally ordered or no the relation on U is " x divides y ":	t if
	(a) $U = \{24, 2, 6\};$	[2]
	(b) $U = \{3, 5, 15\};$	[2]
	(c) $U = \{15, 5, 30\};$	[2]
	QUESTION 6	
6.1	(a) Define the terms maximal element and minimal element of a poset A w	ith
	a partial order \mathscr{R}'	[3]
	(b) Let the set $B = \{2, 3, 4, 5, 6, 8, 9, 10\}$ be ordered by the relation \mathscr{R} define by "x is a multiple of y".	ıed
	i. Show that \mathcal{R} is an order on B .	[6]
	ii. Find all maximal elements and all minimal elements of B .	[4]
	iii. Does B have a first and a last element? Support your answer.	[2]
6.2	Prove, by contradiction, that if $A \cap B \subseteq C$ and $x \in B$, then $x \notin (A - C)$.	[5]

- 7.1 Using truth tables, prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Draw a Venn diagram to illustrate the proof. [10]
- 7.2 Prove that if $S \subseteq T$ and $T \subseteq \mathbb{R}$, where $S \neq \emptyset$ and $T \neq \emptyset$, and if u is an upper bound for T, then u is an upper bound for S.
- 7.3 Let $S = \{x \in \mathbb{Q} : x^2 < 2\}$. Prove that $\inf S = -\sqrt{2}$ and $\sup S = \sqrt{2}$. [7]

END OF EXAMINATION