# **UNIVERSITY OF SWAZILAND**

## SUPPLEMENTARY EXAMINATION 2008/09

#### BSc.II

TITLE OF PAPER

: MATHEMATICS FOR SCIENTISTS

**COURSE NUMBER** 

M215

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE (5) QUESTIONS

3. ONLY NON-PROGRAMMABLE CALCULATORS

MAY BE USED.

SPECIAL REQUIREMENTS

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY TEH INVIGILATOR.

(a)Let A, B and C be  $(2 \times 2)$  matrices. Determine which of the following is true. Give examples.

(i) 
$$AB = O \Rightarrow A = 0$$
 or  $B = 0$ ,

(ii) 
$$AB = AC \Rightarrow A = 0$$
 or  $B = C$ . [2,2]

(b) Consider the matrix

$$A = \left[ \begin{array}{rrr} 3 & 2 & -1 \\ 0 & 4 & -6 \\ 2 & -1 & 3 \end{array} \right].$$

- (i) Find the minors and the cofactors for each entry.
- (ii) Expand, simplify and evaluate the determinant.
- (iii) Check your solutin by applying a direct formula for the determinant of  $(3 \times 3)$  matrix. [4,2,3]
- (c) Apply Lagrange's method to find min f(X)

$$f(X) = 2x_1^2 + x_2^2$$

subject to the constraint

$$x_1 + 2x_2 = 3.$$

[7]

- (a) Find the inverse and check the result, or state that the inverse does not exist, giving reasons
- (i)  $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ (ii)  $\begin{bmatrix} 6 & -2 & \frac{1}{2} \\ 1 & 5 & 2 \\ -8 & 24 & 7 \end{bmatrix}$

[2,4]

(b) Solve the following system

$$3x_1 + 2x_2 + x_3 = 3$$

$$2x_1 + x_2 + x_3 = 0$$

$$6x_1 + 2x_2 + 4x_3 = 6$$

applying

- (i) Gauss elimination method,
- (ii) Cramer's rule.

[4,4]

(c) Let D be the region defined by the inequalities

$$x^2 + y^2 < 2$$
,  $0 < z < x^2 + y^2$ .

Pass to the cylindrical coordinates to find

$$\int \int \int \int x^2 y^2 dx dy dz$$

[6]

- (a) Find the equation of the line through (6, -3) which is
- (i) parallel,
- (ii) perpendicular

to the line 
$$x - 3y + 12 = 0$$
. [3,3]

- (b) State L'Hospial rule. [3]
- (c) Apply the above rule to evaluate the following limits
- (i)  $\lim_{x \to 0} \frac{\tan x}{x}$ , (ii)  $\lim_{x \to +\infty} \frac{x^2 + 3x + 1}{4x^2 - 5x + 1}$ . [3,3]
- (d) A ladder 20m long learns against a vertical wall. The bottom of the ladder is pulled away from the wall at the rate of 8m/min. How fast is the top of the ladder moving down the wall when the bottom of the ladder is 12m from the wall? [5]

- (a) State and prove the mean value theorem (MVT). [5]
  (b) Let  $f(x) = \frac{4}{x}$ . Find all numbers in the open interval (1, 4) which satisfy the MVT on the interval [1, 4]. [3]
  (c) Find the area enclosed between the parabola  $y = x^2$ , the y-axis and the tangent to this parabola at the point (1, 1). [5]
- (d) Find the surface area of a sphere of radius R. [7]

#### QUESTION 7

- (a) Find the partial derivatives (at x = 0,  $y = \pi$ ) of  $f(x, y) = \sin(x^2 + y)$ . [5]
- (b) Suppose that  $F(x,y)=3x^2y$ ,  $x=\varphi(u,v)=u+v$  and  $y=\psi(u,v)=uv$ .

Set  $z = F(\varphi(uv), \psi(u, v))$  and find the partial derivatives  $\frac{\partial z}{\partial u}, \frac{\partial z}{\partial v}$  at  $u = 2, \quad v = 3$ . [7]

(c) Compute the double integral

$$\int_0^{\frac{\pi}{2}} \int_0^{\pi} \sin x \cos y \ dx \ dy.$$

[8]

#### END OF EXAMINATION