UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2008/09

BSc.II

TITLE OF PAPER

: MATHEMATICS FOR SCIENTISTS

COURSE NUMBER

M215

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE (5) QUESTIONS

3. ONLY NON-PROGRAMMABLE CALCULATORS

MAY BE USED.

SPECIAL REQUIREMENTS

: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY TEH INVIGILATOR.

- (a) Show that f(x) = 3x + 5 is continuous at $x_0 = 2$. [3]
- (b) (i) Let the points P, Q, R, S, have Cartesian coordinates $(p_1, p_2), (q_1, q_2), (r_1, r_2)$ and (s_1, s_2) , respectively. State and prove the necessary and sufficient conditions for \overline{PQ} and \overline{RS} to represent the same vector.
- (ii) Apply this theorem to find the coordinates of point T such that $\overline{PQ} \sim \overline{QT}$, if $P=(4,1), \quad Q=(2,-2).$ [5,2]
- (c) Use the quadratic approximation formula to compute $\sqrt{1+x}$ for small |x|, and estimate the error. In particular, compute $\sqrt{1.02}$.
- (d) Find the fourth Taylor polynomial, at $x_0 = 0$, for $f(x) = \sqrt{1+x}$. [4]

QUESTION 2

- (a) Let the points P, Q, R have the Cartesian coordinates (1, 2, 3), (4, -1, 7) and (6, -1, 4), respectively. Compute $\theta = (P\hat{Q}R)$.
- (b) Find the volume of a parallelopiped spaned by $\overline{a} = \overline{OA}$, $b = \overline{OB}$ and $\overline{c} = \overline{OC}$. Thus prove the mixed triple product formula

$$\overline{a} \cdot (\overline{b} \times \overline{c}) = (\overline{a} \times \overline{b}) \cdot \overline{c}. \tag{5}$$

- (c) Find the volume obtained by rotating the region bounded by the arc of the parabola $y = x^2$ from x = 0 to x = 2, the y-axis, and the line y = 4 about the y-axis.
- (d) What is the equation, in polar coordinates, of
- (i) A straight line,
- (ii) A vertical line,
- (iii) A horizontal line? [3,2,2]

(a) Let A, B and C be three 2 × 2 matrices. Determine which of the following is true. Give examples

(i)
$$AB = 0 \Rightarrow A = 0$$
 or $B = 0$.

(ii)
$$AB = AC \Rightarrow A = 0$$
 or $B = C$. [2,2]

(b) Consider the matrix

- (ii) Expand, simplify and evaluate the determinant.
- (iii) Check your solution by applying a direct formular for the determinant of a 3 × 3 matrix. [4,2,3]
- (c) Find the maximum and minimum values of $f(x,y) = x^2 + y$ subject to the constraint

$$x^2 + y^2 = 4. ag{7}$$

(a) Find the inverse and check the result, or state that the inverse does not exist, giving a reason

(i)
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

(ii) $\begin{bmatrix} 0.5 & 0 & -0.5 \\ -0.1 & 0.2 & 0.3 \\ 0.5 & 0 & -1.5 \end{bmatrix}$ [2,4]

(b) Solve the following system

$$-x_1 + x_2 + 2x_3 = 2$$
$$3x_1 - x_2 + x_3 = 6$$
$$-x_1 + 3x_2 + 4x_3 = 4,$$

applying

(i) Gauss elimination method,

(c) Let D be the region defined by the inequalities

$$x^2 + y^2 < 1$$
, $0 < z < x^2 + y^2$.

Pass to the cylindrical coordinates to find

$$\int \int_{D} \int x^2 y^2 dx \ dy \ dz. \tag{6}$$

(a) Find the equation of the line through (1,2) which is (i) parallel, (ii) perpendicular to the line 2x - 4y + 5 = 0. [3,3]
(b) State L'Hospital rule. [3]
(c) Apply the above rule to evaluate the following limits
(i) lim sin x - e^x + 1 / x²,
(ii) lim log sin x / log tan x. [3,3]
(d) Water is poured into a cylindrical container of radius 6cm at the rate of 36cm³/sec.
How fast is the level of the water rising? [5]

QUESTION 6

(a) State and prove Rolle's theorem. [5]
(b) If f(x) = x²/₃, find all numbers in the open interval (-1,1) for which the mean value theorem is satisfied. [3]
(c) Find the area of the region enclosed between the curve y = x³ and the line y = x. [5]
(d) Find the area of the surface generated by rotating the curve c
c: y = ½x³, 0 < x < 2, about the x-axis, [7]

(a) Find the partial derivatives (at x = 2, y = 3) of

$$f(x,y) = 3x^3y + 4xy^2 - 2x + 4y - 5.$$

[5]

- (b) Find the partial derivatives with respect to u and v of $z=e^{xy}$ where $x=u^2$ and y=uv.
- (c) Compute the volume under the surface

$$z = f(x, y) = xy + 1$$

over the region D, where D: 0 < x < 2, 0 < y < 4.

[8]

END OF EXAMINATION