UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2008/2009

BSc. / BEd. / B.A.S.S. II

TITLE OF PAPER

: CALCULUS 1

COURSE NUMBER

M 211

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

3. ONLY NON-PROGRAMMABLE CALCULATORS

MAY BE USED.

SPECIAL REQUIREMENTS

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(a) For the function $f(x) = \frac{x^2 - 3x}{(x+3)^2}$, show that

(i)
$$f'(x) = \frac{9x-9}{(x+3)^3}$$
, and

(ii)
$$f''(x) = \frac{-18x+54}{(x+3)^4}$$

Hence find the

- (iii) intervals of increase and decrease,
- (iv) stationary points,
- (v) intervals of upward and downward concavity,
- (vi) inflection points,
- (vii) intercepts.

Using the information above, sketch the graph of f(x). [20 marks]

QUESTION 2

- (a) (i) State the First Derivative Theorem for local extreme Values.
- (ii) Define a critical point c of a function f(x), hence find the absolute maximum and minimum values of

$$f(x) = 8x - x^4$$
 on $[-2, 1]$. [10 marks]

- (b) (i) State (without proof) the Mean Value Theorem.
- (ii) Show that if f'(x) = 0 for all $x \in (a, b)$, then f(x) is a constant function over (a, b). [10 marks]

- (a) (i) State the Alternating Series Test Theorem.
- (ii) Use this test to investigate the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n^3 1}.$

[10 marks]

- (b) (i) State the Limit Comparison Test Theorem.
- (ii) Use this test to investigate the following series:

$$1. \sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$
.

[10 marks]

QUESTION 4

Use L'Hopital's Rule to evaluate the limit of the following functions:

(a)
$$\lim_{x \to \infty} \frac{5x^2 - 3x}{7x^2 + 1}$$

$$(\mathbf{b}) \lim_{t \to 0} \frac{\sin t^2}{t}$$

$$(c)\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right)$$

$$(d)\lim_{x\to 0^+} (1+x)^{\frac{1}{x}}$$

[20 marks]

- (a) (i) State the Sandwich Theorem for Sequences.
- (ii) Use the theorem above to find the limit of the sequence $a_n = \frac{\cos n}{n^2}.$ [6 marks]
- (b) Find the area of the surface generated by revolving the curve $y=2\sqrt{x},\,1\leq x\leq 2,$ about the x-axis. [5 marks]
- (c) Derive the formula of the length of a plane curve y=f(x) and hence find the length of the curve, $y=\frac{1}{3}(x^2+2)^{\frac{3}{2}}$ from x=0 to x=3. [9 marks]

QUESTION 6

- (a) Define the radius and interval of convergence of a power series of the form $\sum_{n=0}^{\infty} c_n(x-a)^n$, hence find the radius and interval of conver-
- gence of the power series: $\sum \frac{(-1)^n n! x^n}{n^n}$ [8 marks]
- (b) Write down the first four terms in the Binomial series for $\sqrt{9-x}$. [5 marks]
- (c) Find the Taylor Series for $f(x) = \ln(x)$ about x = 2. [7 marks]

- (a) Prove that the volume of a sphere generated by rotating the semicircle $x^2 + y^2 \le a^2$ $(y \ge 0)$ about the x-axis is given by $\frac{4}{3}\pi a^3$. [6]
- (b) Find the volume of the solid of revolution obtained by rotating the area bounded by $y = 1 x^2$, and $y = 4 4x^2$ about
- (i) x-axis

(ii) the line y = -1.

[14 marks]

END OF EXAMINATION