UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2008/2009

BSc. / BEd. / B.A.S.S. I

TITLE OF PAPER

: INTRODUCTION TO CALCULUS

COURSE NUMBER

M 115

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

3. ONLY NON-PROGRAMMABLE CALCULATORS

MAY BE USED.

SPECIAL REQUIREMENTS

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- (a) Evaluate the following integrals using trig substitution

- (i) $\int \frac{1}{\sqrt{4-9x^2}} dx$ [5] (ii) $\int \frac{2x-3}{x^2+6x+13} dx$
- [5]

- (b) Evaluate the following definite integrals
- (i) $\int_{\frac{\pi}{2}}^{\frac{e}{2}} \frac{\ln(2x)}{x} dx$
- [5] (ii) $\int_{2}^{4} \frac{x}{2 + 5x^{2}} dx$
- [5]

QUESTION 2

(a) Evaluate the integral $\int \frac{\cos x}{1-\sin x} dx$

[5]

(b) Evaluate $\lim_{x \to 1} \frac{2x^2 - 3x + 1}{x - 1}$

- [5]
- (c) Use the definition to evaluate the derivative of
- (i) $f(x) = \sqrt{x}$
- [5] (ii) $f(x) = \frac{1}{1 x^2}$
- [5]

(a) Use implicit differentiation to find $\frac{dy}{dx}$ given that $e^x - e^y = e^{x-y}$ [5]

(b) Use the chain rule to find $\frac{dy}{dx}$ given that $y = 2u^2$ and $u = x^2 - 1$

(c) Evaluate the following integrals

(i)
$$\int \frac{x}{\sqrt{1-x}} dx$$
 [5] (ii) $\int x \ln(3x) dx$ [5]

QUESTION 4

(a) Derive a reduction formula for $\int \sin^n x dx$ [5]

(b) Use (a) to evaluate

$$\int \sin^5 x dx$$

[5]

(c) Find
$$\frac{dy}{dx}$$
 for $x \cos y = \sin(x+y)$ [5]

(d) Find $\frac{dy}{dx}$ for $y = x^2 arcsec(\frac{2}{x})$ [5]

(a) Evaluate the following integrals

(i)
$$\int \frac{\cos^3 3x}{\sin^2 3x} dx$$
 [5] (ii)
$$\int \sin^4 x \cos^2 x dx$$
 [5]

(b) Find the derivative $\frac{dy}{dx}$ for each of the following

$$(i) y = 2\cos(3x^2) + 5x\sin x$$
 [5]

(ii)
$$y = \cos 2x \sinh 2x$$
 [5]

QUESTION 6

(a) (i) Find the expression for $\frac{d^n y}{dx^n}$ (n is a positive integer) for

$$y = \frac{1}{1 - 2x}$$

[5]

(b) Integrate

(i)
$$\int \frac{d\theta}{1 + \cos \theta}$$
 [5] (ii) $\int \frac{x^3}{x^2 - 2x + 1} dx$ [5]

(c) Find
$$\frac{d^2y}{dx^2}$$
 for $y = e^x \cos 4x$ [5]

(a) Evaluate the following limits

(i)
$$\lim_{x \to 2} \frac{4 - x^2}{3 - \sqrt{x^2 + 5}}$$
 [5] (ii) $\lim_{x \to 1} \frac{x^3 - 1}{4x^3 - x - 3}$ [5]

(b) Show that each of the specified function satisfies the given partial differential equations

(i)
$$z = \sqrt{x^2 + y^2}$$
 satisfies $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$ [5]

(ii)
$$f = e^{\frac{x}{y}} \sin(\frac{x}{y}) + e^{\frac{y}{x}} \cos(\frac{y}{x})$$
 satisfies $xf_x + yf_y = 0$ [5]