UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2008/2009

BSc. / BEd. / B.A.S.S. I

TITLE OF PAPER

INTRODUCTION TO CALCULUS

COURSE NUMBER

M 115

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

3. ONLY NON-PROGRAMMABLE CALCULATORS

MAY BE USED.

SPECIAL REQUIREMENTS

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(a) Find the limit

$$\lim_{x \to \infty} \frac{1 - 2x - 2x^2}{2x^3 - 3x + 1}$$

[4]

(b) Find the equation for the tangent to the curve at the given point:

$$f(x) = x^3 - 3x$$
 at $p(2,2)$

- (c) Find the derivative of y with respect to x for $y = x^x$. [4]
- (d) Find the first and second derivative of the following

$$f(x) = x^2 \cos x$$

[8]

(a) Find $\frac{dy}{dx}$ for the following, in as simplified a form as possible

(i)
$$y = (x^2 + 1)\frac{3}{2} + \sqrt{x^2 + 1}$$
 [5]

(ii)
$$y^3 + y + x^2 + x = 0$$
 [5]

(b) Evaluate the following integrals

(i)
$$\int \frac{x}{(x-1)^2(x+1)}$$
 [5] (ii) $\int x(\ln x)^2 dx$ [5]

QUESTION 3

(a) Evaluate the following integral

$$\int \frac{dx}{(4+x^2)^2}$$

[6]

- (b) Find the area bounded by the curve $y = 4x x^2$ and the straight line y = 3x. [7]
- (c) Use partial fractions to evaulate

$$\int \frac{x^2+x+1}{x^3-x^2-x+1} dx$$

[7]

(a) Evaluate

(i)
$$\int \sin^4 x \cos^3 x dx$$
 [5] (ii) $\int \frac{x^2}{(9-x^2)^{\frac{3}{2}}} dx$ [5]

(b) Find
$$\frac{dy}{dx}$$
 for $y = x^2 \arcsin(\frac{1}{x})$ [5]

(c) Use Leibnitz's rule to find
$$\frac{d^4y}{dx^4}$$
 for $y = x^5 \ln x$ [5]

QUESTION 5

(a) Derive a reduction formula for
$$\int \cos^n x dx$$
 [5] and hence evaluate $\int \cos^3 x dx$

(b) Use logarithmic differentiation to find $\frac{dy}{dx}$

(i)
$$y = x^x$$
 [5] (ii) $y = x^{\sin x}$

(a) Use the definition (not formulas) to compute the derivative for the following

(i)
$$f(x) = \frac{x-1}{x+2}$$
 [5] (ii) $y = \sqrt{x+1}$

(b) Evaluate the definite integral

$$\int_{3}^{4} x(x^2+3)^8 dx$$

[5]

[5]

(c) Use integration by parts to evaluate $\int x^2 \cos x dx$

QUESTION 7

(a) Use implicit differentiation to find $\frac{dy}{dx}$ given that

$$\cos(xy) + x^2y + y = 0$$

[5]

(b) Calculate the area bounded by the curves $y = x^2 - 1$ and

$$y = 1 - x^2 \tag{10}$$

(c) Find the integral $\int \sin 5x \cos 2x dx$ [5]