University of Swaziland

Supplementary Examination - July 2009

BSc I, EEng I, BEd I

Title of Paper

: Algebra, Trig. and Analytic Geometry

Course Number

: M111

Time Allowed

: Three (3) hours

Instructions

1. This paper consists of SEVEN questions.

- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1

(a) Work out

$$\frac{2x^4 + x^2 - 2x - 1}{1 - 2x}.$$
 [8 marks]

- (b) Use the binomial theorem to approximate $\sqrt{10}$ correct to 4 decimal places. [7 marks]
- (c) Evaluate and simplify

$$\begin{vmatrix} 1 & \tan \alpha & \sec \alpha \\ 0 & \sec \alpha & \tan \alpha \\ -1 & \tan \alpha & \sec \alpha \end{vmatrix} .$$
 [5 marks]

Question 2

(a) Simplify

$$\sin(\theta + 30^0) + \cos(\theta - 60^0)$$
. [5 marks]

(b) Find the exact value of

$$\cos\left(22\frac{1}{2}^{0}\right)$$
. [5 marks]

(c) Find the cube roots of

$$-125i$$
. [10 marks]

Question 3

(a) Solve

i.
$$4^x = 5^{2-2x}$$
. [4 marks]
ii. $10^{\log(2x+7)} = 8$. [6 marks]

(b) Expand and simplify term by term

$$\left(1 - x + \frac{1}{x}\right)^3.$$
 [10 marks]

Question 4

(a) Prove by mathematical induction

$$1 + 2 + 2^{2} + \dots + 2^{n-1} = 2^{n+1} - 1, \quad n = 1, 2, \dots$$
[10 marks]

(b) Find all values of x in the interval $0 \le x < 2\pi$, satisfying

$$\sin 2x + \cos x + \cos^2 x = 1 - \sin^2 x. \qquad [6 \text{ marks}]$$

(c) Evaluate

$$\frac{\left(1+i\sqrt{3}\right)^4}{\left(-\sqrt{3}-i\right)^3}$$
 [4 marks]

and express your answer in the form a + ib.

Question 5

- (a) Find the 7th term in the expansion of $\left(\frac{2}{x} x\right)^{-2}$. [4 marks]
- (b) Prove

$$\frac{\sin \theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta} = \tan \theta.$$
 [10 marks]

(c) Find the equation of the circle that passes through (3,1) and (6,4) with centre on x+3y=5. [6 marks]

Question 6

(a) Use the rational root theorem and synthetic division to find all real roots of

$$x^3 - 3x^2 + 4 = 0.$$
 [10 marks]

(b) Find all roots (real and complex) of

$$z^4 + 5z^2 - 36 = 0.$$
 [10 marks]

Question 7

(a) Find the inverse matrix of

$$A = \begin{pmatrix} 2 & -3 & -3 \\ 1 & 3 & 2 \\ 3 & -4 & -1 \end{pmatrix}.$$
 [5 marks]

[13 marks]

(b) Evaluate

$$\left(1-i\right)^{10}$$

and express in the form a + ib.

[7 marks]