University of Swaziland

Final Examination, December 2008

BSc I, EEng I, BEd I

Title of Paper

: Algebra, Trig. and Analytic Geometry

Course Number

: M111

Time Allowed

: Three (3) hours

Instructions

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1

(a) Divide

$$\frac{x^5 + 12x^3 - 21x - 20}{x^2 - 2x + 2}.$$
 [8 marks]

- (b) Use the binomial theorem to find the exact value of $\left(2-\sqrt{2}\right)^5$. [7 marks]
- (c) Evaluate

$$\begin{vmatrix}
2 & 0 & -3 & 0 \\
-1 & 2 & 0 & 1 \\
4 & 0 & 0 & 3 \\
0 & 4 & 2 & 0
\end{vmatrix}$$
 [5 marks]

Question 2

(a) Given that a, b, c are in arithmetic progression, prove that $\ln a, \ln b, \ln c$ are in geometric progression.

[5 marks]

(b) Find the exact value of the infinite sum

$$2 - \sqrt{2} + 1 - \cdots$$
 [5 marks]

(c) Find the fourth roots of

$$-81.$$
 [10 marks]

Question 3

(a) Solve

i.
$$\log_2(x+2) = 3 - \log_2(x-5)$$
 [4 marks]

ii.
$$4^x - 3 \cdot 2^{x+1} + 8 = 0$$
. [6 marks]

(b) Find the first five terms of the binomial expansion of $(1+x)\sqrt{1-2x}.$ [10 marks]

Question 4

(a) Prove by mathematical induction

$$1^3 + 3^3 + 5^3 + \dots + (2n-1)^3 = n^2(2n^2 - 1), \quad n = 1, 2, \dots$$
 [10 marks]

(b) Find all values of x in the interval $0 \le x < 2\pi$, satisfying

$$\cos 2x + \cos x + \cos^2 x = -\sin^2 x. \qquad [6 \text{ marks}]$$

(c) Find the centre and radius of the circle with equation

$$5x^2 + 5y^2 + 20x + 50y + 129 = 0.$$
 [4 marks]

Question 5

(a) Find the term independent of x in the expansion of $\left(x - \frac{1}{\sqrt{x}}\right)^{12}$. [4 marks]

(b) Prove

$$\sin^6 \varphi + \cos^6 \varphi = 1 - 3\sin^2 \varphi \cos^2 \varphi.$$
 [10 marks]

(c) Evalute

$$\frac{5+5i}{3-4i} + \frac{20}{4+3i}$$

and express your answer in the form a + ib. [6 marks]

Question 6

(a) Use the rational root theorem and synthetic division to find all the roots of

$$x^4 + x^3 - 19x^2 + 11x + 30 = 0.$$
 [10 marks]

(b) Solve

$$z^4 + z^2 + 1 = 0.$$
 [10 marks]

Question 7

(a) Use Cramer's rule to solve the system

$$4x + 4y - 3z = 3$$
$$2x + 3y + 2z = -4$$
$$3x - y + 4z = 4.$$

[13 marks]

(b) Evaluate

$$\left(\sqrt{3}-i\right)^{10}$$
,

and express in the form a + ib.

[7 marks]