UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2007/2008

B.Sc. / B.Ed. / B.A.S.S. IV

TITLE OF PAPER : Metric Spaces

COURSE NUMBER : M431

:

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- (a) Let X be a nonempty set.
 - (i) What is meant by saying that (X, d) is a metric space?
 - (ii) Let d be the function on \mathbb{R}^2 defined by

$$d(x, y) = \max\{3|x_1 - y_1|, 2|x_2 - y_2|\},\$$

where $x = (x_1, x_2) \in \mathbb{R}^2$ and $y = (y_1, y_2) \in \mathbb{R}^2$. Prove that (\mathbb{R}^2, d) is a metric space. [10]

(b) Let $A = \{(x_1, x_2) : 0 \le x_1, 0 \le x_2, x_1 + x_2 \le 2\}$ and let x = (2, 2). Find d(x, A) for the Euclidean, the Max, and for the New York metrics. (Recall that the New York metric is defined by

$$d(x,y) = \left\{ \begin{array}{ll} |y_2 - x_2| & \text{if } x_1 = y_1 \\ |x_2| + |y_1 - x_1| + |y_2| & \text{if } x_1 \neq y_1. \end{array} \right\}$$

Calculate diam(A) in each case.

[10]

QUESTION 2

- (a) Let (X, d) be a metric space and let $S \subseteq X$. What is meant by saying that S is open? Prove that any union of open sets in X is open and any finite intersection of open sets in X is open. [8]
- (b) What is meant by an open ball B(a,r) in a metric space (X,d)? Show that an open ball is open. By drawing a diagram, or otherwise, describe the open ball B(a,3) in \mathbb{R}^2 , where a=(2,5)
 - (i) with the usual metric,
 - (ii) with the max metric.

(c) Show that \emptyset and X are closed, where (X, d) is a metric space.

[6]

QUESTION 3

- (a) Let (X, d) be a metric space and $\{x_n\}$ be a sequence in X. What is meant by saying that $\{x_n\}$ is *convergent*? [2]
- (b) Decide whether or not the following sequences are convergent in the usual (Euclidean) metric on \mathbb{R}^2 :

(i)
$$x_n = \left(\frac{n^3}{3n^3 + 1}, \frac{3}{3n + 3}\sin(\frac{n\pi}{2})\right),$$

(ii) $x_n = (10^{-n}, (-1)^n \exp(\frac{1}{n})).$ [8]

- (c) (i) Suppose that $\{x_n\}$ converges to x in C[a,b] in the uniform metric. Explain what is meant by *pointwise convergence* of a sequence $\{x_n\}$ in C[a,b]. Show that $\{x_n\}$ converges to x pointwise.
 - (ii) Let x_n in C[0,1] be defined by

$$x_n(t) = \begin{cases} \frac{nt}{n-1} & \text{if } 0 \le t \le 1 - \frac{1}{n}, \\ n(1-t) & \text{if } 1 - \frac{1}{n} \le t \le 1. \end{cases}$$

Sketch the graph of $x_n(t)$ and show that $\{x_n\}$ converges pointwise to the function

$$x(t) = \begin{cases} t & \text{if } 0 \le t < 1, \\ 0 & \text{if } t = 1. \end{cases}$$

Deduce that $\{x_n\}$ is not convergent in C[0,1] in the uniform metric. [10]

QUESTION 4

- (a) Prove that in a metric space (X, d), a subset $F \subseteq X$ is closed if the limit of any convergent sequence $\{x_n\}$ of points of F is in F.
- (b) Prove that \mathbb{R}^2 equipped with the metric

$$d(x,y) = \alpha |x_1 - y_1| + |x_2 - y_2|, \qquad x = (x_1, x_2), \quad y = (y_1, y_2)$$

is complete, where $\alpha > 0$ is fixed.

[12]

QUESTION 5

- (a) Let X be a metric space. When is a subset $M \subseteq X$ said to be:
 - (i) bounded;
 - (ii) totally bounded. [3]
- (b) Prove that in \mathbb{R} with the usual metric, the notions of boundedness and total boundedness are equivalent. [5]
- (c) Show that a compact set is closed and bounded. [6]
- (d) Which of the following sets is compact? Give reasons.
 - (i) $\{(x,y): 0 \le x \le y \le 1\}$ in \mathbb{R}^2 ,

(ii)
$$\{1, \frac{1}{3}, \frac{1}{3^2}, \dots, \frac{1}{3^n}, \dots\}$$
 in \mathbb{R} , where $n \in \mathbb{N}$. [6]

QUESTION 6

- (a) When are two subsets A and B of a metric space said to be separated? [2]
- (b) Verify that two nonempty disjoint closed sets in a metric space are separated. [2]
- (c) Give two alternate definitions of connectedness of a subset M of a metric space X.
- (d) (i) Prove that if X is a connected metric space and $f: X \longrightarrow \mathbb{R}$ is a continuous function, then f(X) is connected.
 - (ii) Deduce that if $f:[0,1] \longrightarrow [0,1]$ is continuous, then there exists an $x \in [0,1]$ such that f(x) = x. [12]

QUESTION 7

- (a) (i) What is a Lebesgue number for a given open cover of a metric space?[2]
 - (ii) State and prove Lebesgue's Covering Lemma. [8]
- (b) (i) Explain what is meant by a contraction of a metric space, and state without proof the Contraction Mapping Theorem.
 - (ii) Show that the mapping $f: [-1,1] \longrightarrow [-1,1]$ defined by $f(x) = \frac{1}{12}(x^5 2x^3 + 8)$ is a contraction, and deduce that there is unique solution to the equation $x^5 2x^3 12x + 8 = 0$ in the interval [-1,1]. [10]

END OF EXAMINATION