UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2007/2008

B.Sc. / B.Ed. / B.A.S.S. IV

TITLE OF PAPER

: Metric Spaces

COURSE NUMBER : M431

TIME ALLOWED

: THREE (3) HOURS

<u>INSTRUCTIONS</u>

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- (a) Let X be a nonempty set.
 - (i) What is meant by saying that (X, d) is a metric space?
 - (ii) Let d be the function on \mathbb{R}^2 defined by

$$d(x,y) = c_1|x_1 - y_1| + c_2|x_2 - y_2|,$$

where $x = (x_1, x_2) \in \mathbb{R}^2$, $y = (y_1, y_2) \in \mathbb{R}^2$, and $c_i > 0$. Prove that (\mathbb{R}^2, d) is a metric space. [10]

(b) Let $A = \{(x_1, x_2) : 0 \le x_1, 0 \le x_2, x_1 + x_2 \le 2\}$ and let x = (2, 2). Find d(x, A) for the Euclidean, the Max, and for the New York metrics. (Recall that the New York metric is defined by

$$d(x,y) = \begin{cases} |y_2 - x_2| & \text{if } x_1 = y_1 \\ |x_2| + |y_1 - x_1| + |y_2| & \text{if } x_1 \neq y_1. \end{cases}$$

Calculate diam(A) in each case.

[10]

QUESTION 2

- (a) Let (X, d) be a metric space and let $S \subseteq X$. What is meant by saying that S is closed? Prove that any intersection of closed sets in X is closed and any finite union of closed sets in X is closed. [8]
- (b) What is meant by an open ball B(a,r) in a metric space (X,d)? Show that an open ball is open. By drawing a diagram, or otherwise, describe the open ball B(a,3) in \mathbb{R}^2 , where a=(4,5)
 - (i) with the usual metric
 - (ii) with the max metric.

[6]

(c)	Prove that in any metric space X , each closed ball is a closed set. Show that any finite set in X is closed [6]		
QUESTION 3			
(a)	Prove that:		
	(i) Every convergent sequence is a Cauchy sequence; [3]		
	(ii) If $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences in a metric space (X,d) , then the		
	sequence $\{d(x_n, y_n)\}$ is convergent in \mathbb{R} . [6]		
(b)	What do you understand by the following:		
	(i) A nowhere dense metric space; [2]		
	(ii) An everywhere dense metric space. [1]		
(c)	State and prove Baire's theorem. [8]		
QUESTION 4			
(a)	Given a function $f:(X,d_1)\longrightarrow (X,d_2),$		
	(i) When is f said to be continuous in the $\varepsilon - \delta$ sense?		
	(ii) Give an equivalent definition in terms of open sets.		
	(iii) Assuming f is continuous at x_0 , prove that		
	$x_n \to x_0 \Rightarrow f(x_n) \to f(x_0).$		
	[14]		
(b)	Prove that the function $\pi:\mathbb{R}^2\longrightarrow\mathbb{R}$ defined by $\pi(x,y)=x$ is continuous when		
	\mathbb{R}^2 and \mathbb{R} are equipped with their usual metrics. Is π uniformly continuous?		
	Justify your answer. [6]		

QUESTION 5

(a)	Define compactness of a metric space in terms of	
	(i) open coverings,	
	(ii) sequences.	[5]
(b)	Prove that any closed subspace of a compact metric space is compact.	[7]
(c)	prove that the continuous image of a compact subset of a metric space is co	m-
	pact.	[8]
	QUESTION 6	
(a)	When are two subsets A and B of a metric space said to separated?	be [2]
(b)	Verify that two nonempty disjoint closed sets in a metric space separated.	are [2]
(c)	Give two alternate definitions of connectedness of a subset M of a metric space X .	ace
(d)	(i) Prove that if X is a connected metric space and $f: X \longrightarrow \mathbb{R}$ is a continuous function, then $f(X)$ is connected.	ous
	(ii) Deduce that if $f:[0,1] \longrightarrow [0,1]$ is continuous, then there exists	ar
	$x \in [0,1]$ such that $f(x) = x$.	12

QUESTION 7

- (a) (i) What is a Lebesgue number for a given open cover of a metric space? [2]
 - (ii) State and prove Lebesgue's Covering Lemma. [8]
- (b) (i) Explain what is meant by a contraction of a metric space, and state without proof the Contraction Mapping Theorem.
 - (ii) Show that the mapping $f: [-1,1] \longrightarrow [-1,1]$ defined by $f(x) = \frac{1}{14}(x^4 3x^3 + 9)$ is a contraction, and deduce that there is unique solution to the equation $x^4 3x^3 14x + 9 = 0$ in the interval [-1,1]. [10]

END OF EXAMINATION